• Acta Optica Sinica
  • Vol. 40, Issue 5, 0514001 (2020)
Wei Huang1、2, Yulong Cui1、2, Zhixian Li1、2, Zhiyue Zhou1、2, and Zefeng Wang1、2、*
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2Hunan Provincial Key Laboratory of High Energy Laser Technology, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/AOS202040.0514001 Cite this Article Set citation alerts
    Wei Huang, Yulong Cui, Zhixian Li, Zhiyue Zhou, Zefeng Wang. Research on 1.7 μm Fiber Laser Source Based on Stimulated Raman Scattering of Hydrogen in Hollow-core Fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001 Copy Citation Text show less
    References

    [1] Jung E J, Lee J H, Rho B S et al. Spectrally sampled OCT imaging based on 1.7-μm continuous-wave supercontinuum source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1200-1208(2012).

    [2] Bashkatov A N, Genina É A, Kochubey V I et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 99, 836-842(2005).

    [3] Vaidyanathan M, Killinger D K. Tunable 1.7-μm laser spectrometer for optical absorption measurements of CH4, C2H4, and high-temperature HCl[J]. Applied Optics, 32, 847-856(1993).

    [4] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [5] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [6] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).

    [7] Zhang Y, Zhang P, Liu P et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 53, 090002(2016).

    [8] Daniel J M O, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015).

    [9] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 29, 1503-1505(2004).

    [10] Zhang P, Wu D, Du Q L et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission[J]. Applied Optics, 56, 9742-9748(2017).

    [11] Alexander V V, Ke K, Xu Z et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 43, 470-480(2011).

    [12] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [13] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004).

    [14] Couny F, Benabid F, Light P S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 143903(2007).

    [15] Wang Z F, Yu F, Wadsworth W J et al. Single-pass high-gain 1.9 μm optical fiber gas Raman Laser[J]. Acta Optica Sinica, 34, 0814004(2014).

    [16] Chen Y B, Gu B, Wang Z F et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 36, 0506002(2016).

    [17] Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 36, 0806005(2016).

    [18] Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 37, 0514002(2017).

    [19] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0903008(2018).

    [20] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [21] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 43, 4671-4674(2018).

    [22] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [23] Herring G C, Dyer M J, Bischel W K. Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2[J]. Physical Review A, 34, 1944-1951(1986).

    [24] Bischel W K, Dyer M J. Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2[J]. Journal of the Optical Society of America B, 3, 677-682(1986).

    [25] Li X Q, Gao S F, Wang Y Y et al. Fusion splice technique of hollow-core photonic crystal fiber[J]. Navigation Positioning and Timing, 4, 102-106(2017).

    [26] Tsunemi A, Nagasaka K, Tashiro H. Precise measurement of the rotational Raman gain coefficient in para-hydrogen by the large-signal method[J]. Applied Optics, 31, 4165-4171(1992).

    Wei Huang, Yulong Cui, Zhixian Li, Zhiyue Zhou, Zefeng Wang. Research on 1.7 μm Fiber Laser Source Based on Stimulated Raman Scattering of Hydrogen in Hollow-core Fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001
    Download Citation