• Laser & Optoelectronics Progress
  • Vol. 61, Issue 8, 0812002 (2024)
Hui Wang1, Jun Wang1、2、*, and Zhaoliang Cao1、2
Author Affiliations
  • 1School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • show less
    DOI: 10.3788/LOP231404 Cite this Article Set citation alerts
    Hui Wang, Jun Wang, Zhaoliang Cao. Water Contact Angle Calculation Method Based on Faster RCNN[J]. Laser & Optoelectronics Progress, 2024, 61(8): 0812002 Copy Citation Text show less
    References

    [1] Zheng Z X, Li W F, Zhang D et al. Rapid transformation of wettability on surface of laser etched red copper[J]. Laser & Optoelectronics Progress, 59, 0714010(2022).

    [2] Liu Q W, Liu G D, Li Z H et al. Preparation and properties of superhydrophobic surface of magnesium alloy by nanosecond laser[J]. Laser & Optoelectronics Progress, 59, 0514004(2022).

    [3] Smedley G T, Coles D E. A refractive tilting-plate technique for measurement of dynamic contact angles[J]. Journal of Colloid and Interface Science, 286, 310-318(2005).

    [4] Drelich J. Contact angles: from past mistakes to new developments through liquid-solid adhesion measurements[J]. Advances in Colloid and Interface Science, 267, 1-14(2019).

    [5] Bateni A, Laughton S, Tavana H et al. Effect of electric fields on contact angle and surface tension of drops[J]. Journal of Colloid and Interface Science, 283, 215-222(2005).

    [6] Rotenberg Y, Boruvka L, Neumann A W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces[J]. Journal of Colloid and Interface Science, 93, 169-183(1983).

    [7] Cheng P, Li D, Boruvka L et al. Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles[J]. Colloids and Surfaces, 43, 151-167(1990).

    [8] Huang M L, Liu Y L, Yang Y M. Edge detection of ore and rock on the surface of explosion pile based on improved Canny operator[J]. Alexandria Engineering Journal, 61, 10769-10777(2022).

    [9] Chini S F, Amirfazli A. A method for measuring contact angle of asymmetric and symmetric drops[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388, 29-37(2011).

    [10] Mirzaei M. A new method for measuring the contact angles from digital images of liquid drops[J]. Micron, 102, 65-72(2017).

    [11] Cui J, Xie J B, Liu T et al. Corners detection on finger vein images using the improved Harris algorithm[J]. Optik, 125, 4668-4671(2014).

    [12] Zhang Y, Zhu G Y, Shi T J et al. Small target detection in remote sensing images based on feature fusion and attention[J]. Acta Optica Sinica, 42, 2415001(2022).

    [13] Khan M A, Khan M A, Ahmed F et al. Gastrointestinal diseases segmentation and classification based on Duo-deep architectures[J]. Pattern Recognition Letters, 131, 193-204(2020).

    [14] Song Z Z, Fu L S, Wu J Z et al. Kiwifruit detection in field images using Faster R-CNN with VGG16[J]. IFAC-PapersOnLine, 52, 76-81(2019).

    [15] Wang Q S, Wang F S, Chen J G et al. Faster R-CNN target detection algorithm with adaptive attention mechanism[J]. Laser & Optoelectronics Progress, 59, 1215016(2022).

    [16] Cui Z Y, Pi J T, Chen Y et al. Facial expression recognition combined with improved VGGNet and focal loss[J]. Computer Engineering and Applications, 57, 171-178(2021).

    [17] Dembinski H, Schmelling M, Waldi R. Application of the iterated weighted least-squares fit to counting experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940, 135-141(2019).

    [18] Liu F, Guo M, Wang X J. Small target detection based on cross-scale fusion convolution neural network[J]. Laser & Optoelectronics Progress, 58, 0610012(2021).

    [19] Song M Y, Chen L R, Liang J A et al. Real-time optical fiber end-face defect detection model based on lightweight improved network[J]. Laser & Optoelectronics Progress, 59, 2415006(2022).

    [20] Cheng S, Yang H G, Xu X Q et al. Improved lightweight X-ray aluminum alloy weld defects detection algorithm based on YOLOv5[J]. Chinese Journal of Lasers, 49, 2104005(2022).

    [21] Ding Z M, Zheng K D. Crowd counting algorithm combining attention mechanism and HRNet[J]. Information Technology and Informatization, 31-34(2022).

    [22] Chen H Q, Han Y H. Tire pattern classification based on attention mechanism and transfer learning[J]. Software, 43, 65-69(2022).

    [23] Huang Z, Zhu H B, Tao Y R. Rapid evaluation method of polished surface quality based on YOLOv5[J]. Intelligent Computer and Applications, 12, 247-252(2022).

    [24] Qu H C, Wang X X, Ouyang J. Infrared small-target detection based on hybrid domain module and hole convolution[J]. Laser & Optoelectronics Progress, 60, 1010002(2023).

    [25] Wang Y, Li Y, Guo X H et al. CDANet: common-and-differential attention network for object detection and instance segmentation[J]. Pattern Recognition Letters, 158, 48-54(2022).

    [26] Man Y J, Wang X, Sun D Y et al. Defect detection of metallized ceramic rings based on fusion of target detection and image classification networks[J]. Laser & Optoelectronics Progress, 60, 2015007(2023).

    [27] Bai Z B, Zhang J J, Gao Y et al. Attention mechanism-based object detection algorithm in aerial images[J]. Laser & Optoelectronics Progress, 60, 1215003(2023).

    [28] Wang Y W, Guo Y, Shao X Y. Target detection in remote sensing images based on improved cascade algorithm[J]. Acta Optica Sinica, 42, 2428004(2022).

    Hui Wang, Jun Wang, Zhaoliang Cao. Water Contact Angle Calculation Method Based on Faster RCNN[J]. Laser & Optoelectronics Progress, 2024, 61(8): 0812002
    Download Citation