• Opto-Electronic Engineering
  • Vol. 44, Issue 2, 226 (2017)
Yali Zhao1, Kun Jia1, Han Zhang1, Jiangjiang Ma1, Yisan Lei1, and Hai Ming2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.02.013.1 Cite this Article
    Yali Zhao, Kun Jia, Han Zhang, Jiangjiang Ma, Yisan Lei, Hai Ming. Transmission properties of metal photonic crystal films in visible light and microwave[J]. Opto-Electronic Engineering, 2017, 44(2): 226 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Review article surface plasmon subwavelength optics[J]. Nature, 2004, 424(6950): 424-830.

    [2] Jena S, Tokas R B, Sarkar P, et al. Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one dimensional photonic crystal[J]. Thin Solid Films, 2016, 599: 138-144.

    [3] Shen Huaizhong, Wang Zhanhua, Wu Yuxin, et al. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction[J]. RSC Advances, 2015, 6(6): 4505-4520.

    [4] Moslemi F, Jamshidi-Ghaleh K. Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials[J]. Journal of Applied Physics, 2016, 119(9): 093101.

    [5] Xiao Xing, Wang Wenjun, Li Shuhong, et al. Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals[J]. Optik, 2015, 127(1): 135-138.

    [6] Degli-Eredi I, Sipe J E, Vermeulen N. TE-polarized graphene modes sustained by photonic crystal structures[J]. Optics Letters, 2015, 40(9): 2076-2079.

    [7] Luo Zhaoming, Chen Min, Deng Jiyuan, et al. Low-pass spatial filters with small angle-domain bandwidth based on one-dimensional metamaterial photonic crystals[J]. Optik, 2015, 127(1): 259-262.

    [8] Liu Yongqi, Qi Xinyuan, Lu Yang, et al. Observation of beam deflection in one-dimensional photonic lattice in LiNbO3 crystal accompanied with self-focusing and self-defocusing nonlinearities[J]. Physics Letters A, 2016, 380(1-2): 322-325.

    [9] Xiao Xuyang, Chen Runping. Study of omnidirectional reflection bandgap extension in one-dimensional quasi-periodic metallic photonic crystal[J]. Nano, 2015, 10(6): 1550088.

    [10] Pavlichenko I, Broda E, Fukuda Y, et al. Bringing one-dimensional photonic crystals to a new light: an electrophotonic platform for chemical mass transport visualisation and cell monitoring[J]. Materials Horizons, 2015, 2(3): 299-308.

    [11] Yu Wenjuan, Jia Xu, Long Yongbing, et al. Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9920-9928.

    [12] Mandal S, Bose C, Bose M K. A generalized design of one dimensional photonic crystal based optical filter with lossy materials[J]. Optical and Quantum Electronics, 2016, 48(3): 200.

    [13] Aly A H, Ryu S W, Hsu H T, et al. THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice[J]. Materials Chemistry and Physics, 2009, 113(1): 382-384.

    [14] Sigalas M M, Chan C T, Ho K M, et al. Metallic photonic band-gap materials[J]. Physical Review B, 1995, 52(16): 11744-11751.

    [15] Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22.

    [16] Ye Weimin. Introduction of Photonic Crystals[M]. Beijing: Science Press, 2010: 233-234

    [17] Scalora M, Bloemer M J, Pethel A S, et al. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures[J]. Journal of Applied Physics, 1998, 83(5): 2377-2383.

    [18] Aly A H, Ismaeel M, Abdel-Rahman E. Comparative study of the one dimensional dielectric and metallic photonic crystals[J]. Optics and Photonics Journal, 2012, 2(2): 105-112.

    [19] Ye Weimin. Introduction of Photonic Crystals[M]. Beijing: Science Press, 2010: 40.

    [20] Oskooi A F, Roundy D, Ibanescu M, et al. MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method[J]. Computer Physics Communications, 2010, 181(3): 687-702.

    [21] Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Physical Review B, 2006, 74(11): 115116.

    [22] Belov P A, Hao Yang. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime[J]. Physical Review B, 2006, 73(11): 113110.

    [23] Cai Wenshan, Shalaev V. Optical metamaterials: fundamentals and applications[M]. New York: Springer-Verlag, 2010: 123- 136.

    [24] Pradhan S K, Xiao Bo, Skuza J R, et al. Effects of dielectric thickness on optical behavior and tunability of one-dimensional Ag/SiO2 multilayered metamaterials[J]. Optics Express, 2014, 22(10): 12486-12498.

    Yali Zhao, Kun Jia, Han Zhang, Jiangjiang Ma, Yisan Lei, Hai Ming. Transmission properties of metal photonic crystal films in visible light and microwave[J]. Opto-Electronic Engineering, 2017, 44(2): 226
    Download Citation