• High Power Laser Science and Engineering
  • Vol. 6, Issue 1, 010000e3 (2018)
Ruirong Wang, Honghai An, Zhiyong Xie, and Wei Wang
Author Affiliations
  • Shanghai Institute of Laser Plasma, Shanghai 201800, China
  • show less
    DOI: 10.1017/hpl.2017.33 Cite this Article Set citation alerts
    Ruirong Wang, Honghai An, Zhiyong Xie, Wei Wang. Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments[J]. High Power Laser Science and Engineering, 2018, 6(1): 010000e3 Copy Citation Text show less
    Schematic of the locations of the elliptical crystal segment and detector surface relative to the X-ray source and diagnostic space. The optimized parameters are $\unicode[STIX]{x1D700}=0.9677$, $2f=600$ mm and $\unicode[STIX]{x1D702}=1.8759^{\circ }$. $\unicode[STIX]{x1D712}$ is measured from the ellipse semi-major axis to the initial X-ray trace, $\unicode[STIX]{x1D703}$ is the Bragg angle, and $\unicode[STIX]{x1D6FD}$ is the angle of the X-ray through the crossover focus.
    Fig. 1. Schematic of the locations of the elliptical crystal segment and detector surface relative to the X-ray source and diagnostic space. The optimized parameters are $\unicode[STIX]{x1D700}=0.9677$, $2f=600$  mm and $\unicode[STIX]{x1D702}=1.8759^{\circ }$. $\unicode[STIX]{x1D712}$ is measured from the ellipse semi-major axis to the initial X-ray trace, $\unicode[STIX]{x1D703}$ is the Bragg angle, and $\unicode[STIX]{x1D6FD}$ is the angle of the X-ray through the crossover focus.
    Geometry factor $Fg$ influencing the X-ray intensity reaching the linear detector versus detector position in the elliptically bent spectrometer design.
    Fig. 2. Geometry factor $Fg$ influencing the X-ray intensity reaching the linear detector versus detector position in the elliptically bent spectrometer design.
    Example of IP-recorded Cl spectra using the quartz (10–10) ($2d=8.512$ Å) crystal elliptical analyzer. (a) Raw spectral data recorded by IP. (b) Spectral intensity, obtained by averaging over the photon counts in the direction perpendicular to the dispersion direction of the detector, versus photon energy.
    Fig. 3. Example of IP-recorded Cl spectra using the quartz (10–10) ($2d=8.512$  Å) crystal elliptical analyzer. (a) Raw spectral data recorded by IP. (b) Spectral intensity, obtained by averaging over the photon counts in the direction perpendicular to the dispersion direction of the detector, versus photon energy.
    Schematic of the experimental setup for the point projection of the Al $K$-edge absorption measurements.
    Fig. 4. Schematic of the experimental setup for the point projection of the Al $K$-edge absorption measurements.
    Au $M$-band spectrum from 1.54 to 3.8 keV.
    Fig. 5. Au $M$-band spectrum from 1.54 to 3.8 keV.
    Experimentally measured Al transmission data with the new crystal spectrometer.
    Fig. 6. Experimentally measured Al transmission data with the new crystal spectrometer.
    ParameterValue
    Ellipse eccentricity $\unicode[STIX]{x1D700}$0.9677
    Focal length (distance of X-ray source to crossover) $2f$600 mm
    Major radius $a$310 mm
    Minor radius $b$78 mm
    Inclination angle $\unicode[STIX]{x1D702}$$1.8759^{\circ }$
    Crystal length90 mm
    Crystal width12 mm
    Distance of crystal at $\unicode[STIX]{x1D703}_{\text{B}}=45^{\circ }$ to target chamber center299.26 mm
    Radius of target chamber750 mm
    Radius at $\unicode[STIX]{x1D703}_{\text{B}}=22^{\circ }$, $\unicode[STIX]{x1D6FD}=45^{\circ }$370 mm
    Radius at $\unicode[STIX]{x1D703}_{\text{B}}=78^{\circ }$, $\unicode[STIX]{x1D6FD}=135^{\circ }$21 mm
    Distance of focusing crossover to detection plane $r$25 mm
    Detector length86 mm
    Spectral range:
    Quartz (10–10) $2d=8.512$  Å1490–3880 eV
    Quartz (10–11) $2d=6.687$  Å1895–4940 eV
    Quartz (20–20) $2d=4.216$  Å3006–7835 eV
    Table 1. Main characteristics of the described spectrometer.
    Ruirong Wang, Honghai An, Zhiyong Xie, Wei Wang. Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments[J]. High Power Laser Science and Engineering, 2018, 6(1): 010000e3
    Download Citation