• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1206001 (2022)
Zixi Liu, Cheng Zeng**, and Jinsong Xia*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1206001 Cite this Article Set citation alerts
    Zixi Liu, Cheng Zeng, Jinsong Xia. Research Progress on High-Linearity Electro-Optical Modulators[J]. Chinese Journal of Lasers, 2022, 49(12): 1206001 Copy Citation Text show less
    References

    [1] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [2] Marpaung D, Morrison B, Pagani M et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).

    [3] Ynoquio H L E, Ribeiro R M, Jabulka V B et al. Photonic generation and transmission of linearly chirped microwave pulses with high TBWP by self-heterodyne technique[J]. Journal of Lightwave Technology, 36, 4408-4415(2018).

    [4] Yao J P, Zeng F, Wang Q. Photonic generation of ultrawideband signals[J]. Journal of Lightwave Technology, 25, 3219-3235(2007).

    [5] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters[J]. Journal of Lightwave Technology, 24, 201-229(2006).

    [6] Zhou H L, Zhao Y H, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 7, 792-799(2020).

    [7] Ye X W, Zhang F Z, Yang Y et al. Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging[J]. Photonics Research, 7, 265-272(2019).

    [8] Marpaung D, Yao J, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 13, 80-90(2019).

    [9] Urick V J. Considerations and application opportunities for integrated microwave photonics[C], 16226728(2016).

    [10] Streshinsky M, Ayazi A, Xuan Z et al. Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive[J]. Optics Express, 21, 3818-3825(2013).

    [11] Ayazi A, Baehr-Jones T, Liu Y et al. Linearity of silicon ring modulators for analog optical links[J]. Optics Express, 20, 13115-13122(2012).

    [12] Chen S H, Zhou G Q, Zhou L J et al. High-linearity Fano resonance modulator using a microring-assisted Mach-Zehnder structure[J]. Journal of Lightwave Technology, 38, 3395-3403(2020).

    [13] Marpaung D, Roeloffzen C, Heideman R et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 7, 506-538(2013).

    [14] Childs R B, O’Byrne V A. Multichannel AM video transmission using a high-power Nd∶YAG laser and linearized external modulator[J]. IEEE Journal on Selected Areas in Communications, 8, 1369-1376(1990).

    [15] Clark T R, Currie M, Matthews P J. Digitally linearized wide-band photonic link[J]. Journal of Lightwave Technology, 19, 172-179(2001).

    [16] de Ridder R M, Korotky S K. Feedforward compensation of integrated optic modulator distortion[C], WH5(1990).

    [17] Novak D, Clark T R. Broadband adaptive feedforward photonic linearization for high dynamic range signal remoting[C](2007).

    [18] Johnson L M, Roussell H V. Reduction intermodulation distortion in interferometric optical modulators[J]. Optics Letters, 13, 928-930(1988).

    [19] Masella B, Zhang X P. Linearized optical single-sideband Mach-Zehnder modulator for radio-over-fiber systems[J]. IEEE Photonics Technology Letters, 19, 2024-2026(2007).

    [20] Masella B, Hraimel B, Zhang X P. Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach-Zehnder modulator[J]. Journal of Lightwave Technology, 27, 3034-3041(2009).

    [21] Zhu Z H, Zhao S H, Li X et al. Dynamic range improvement for an analog photonic link using an integrated electro-optic dual-polarization modulator[J]. IEEE Photonics Journal, 8, 15906602(2016).

    [22] Zhu D, Chen J, Pan S L. Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator[J]. Optics Express, 24, 11009-11016(2016).

    [23] Wang W Y, Fan Y Y, Wang R Q et al. Linearity optimization of multi-octave analog photonic links based on power weighting, polarization multiplexing and bias control[J]. Optics Express, 29, 2077-2089(2021).

    [24] Korotky S K, de Ridder R M. Dual parallel modulation schemes for low-distortion analog optical transmission[J]. IEEE Journal on Selected Areas in Communications, 8, 1377-1381(1990).

    [25] Marhic M E. Interferometric modulators linearized to arbitrary order[C], 71-74(1998).

    [26] Zhu G H, Liu W, Fetterman H R. A broadband linearized coherent analog fiber-optic link employing dual parallel Mach-Zehnder modulators[J]. IEEE Photonics Technology Letters, 21, 1627-1629(2009).

    [27] Li J, Zhang Y C, Yu S et al. Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dual-parallel Mach-Zehnder modulator[J]. Optics Letters, 38, 4285-4287(2013).

    [28] Li S Y, Zheng X P, Zhang H Y et al. Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator[J]. IEEE Photonics Technology Letters, 22, 1775-1777(2010).

    [29] Liu W, Ma J X, Zhang J Y. A novel scheme to suppress the third-order intermodulation distortion based on dual-parallel Mach-Zehnder modulator[J]. Photonic Network Communications, 36, 140-151(2018).

    [30] Zhou Y Y, Zhou L J, Wang M J et al. Linearity characterization of a dual-parallel silicon Mach-Zehnder modulator[J]. IEEE Photonics Journal, 8, 16424111(2016).

    [31] Wang R Q, Gao Y S, Wang W Y et al. Suppression of third-order intermodulation distortion in analog photonic link based on an integrated polarization division multiplexing Mach-Zehnder modulator[J]. Optics Communications, 475, 126253(2020).

    [32] Jiang W, Tan Q G, Qin W Z et al. A linearization analog photonic link with high third-order intermodulation distortion suppression based on dual-parallel Mach-Zehnder modulator[J]. IEEE Photonics Journal, 7, 15212677(2015).

    [33] Sabido D J M, Tabara M, Fong T K et al. Improving the dynamic range of a coherent AM analog optical link using a cascaded linearized modulator[J]. IEEE Photonics Technology Letters, 7, 813-815(1995).

    [34] Zhang Q, Yu H, Fu Z L et al. A high linear silicon Mach-Zehnder modulator by the dual-series architecture[C], 19648989(2020).

    [35] Madsen C K. General IIR optical filter design for WDM applications using all-pass filters[J]. Journal of Lightwave Technology, 18, 860-868(2000).

    [36] Xie X B, Khurgin J, Kang J et al. Linearized Mach-Zehnder intensity modulator[J]. IEEE Photonics Technology Letters, 15, 531-533(2003).

    [37] Dingel B, Madamopoulos N, Prescod A et al. Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR > 130 dB)[J]. Optics Communications, 284, 5578-5587(2011).

    [38] Gutierrez A M, Brimont A, Rasigade G et al. Ring-assisted Mach-Zehnder interferometer silicon modulator for enhanced performance[J]. Journal of Lightwave Technology, 30, 9-14(2012).

    [39] Cardenas J, Morton P A, Khurgin J B et al. Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer[J]. Optics Express, 21, 22549-22557(2013).

    [40] Zhang C, Morton P A, Khurgin J B et al. Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si[J]. Optics Express, 24, 19040-19047(2016).

    [41] Zhang C, Morton P A, Khurgin J B et al. Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon[J]. Optica, 3, 1483-1488(2016).

    [42] Cox C H, Ackerman E I, Betts G E et al. Limits on the performance of RF-over-fiber links and their impact on device design[J]. IEEE Transactions on Microwave Theory and Techniques, 54, 906-920(2006).

    [43] Baehr-Jones T, Hochberg M, Wang G X et al. Optical modulation and detection in slotted silicon waveguides[J]. Optics Express, 13, 5216-5226(2005).

    [44] Kuo Y H, Chen H W, Bowers J E. High speed hybrid silicon evanescent electroabsorption modulator[J]. Optics Express, 16, 9936-9941(2008).

    [45] Xu Q, Schmidt B, Pradhan S et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 435, 325-327(2005).

    [46] Wooten E L, Kissa K M, Yi-Yan A et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 69-82(2000).

    [47] Rao A, Patil A, Rabiei P et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz[J]. Optics Letters, 41, 5700-5703(2016).

    [48] Chen L, Chen J H, Nagy J et al. Highly linear ring modulator from hybrid silicon and lithium niobate[J]. Optics Express, 23, 13255-13264(2015).

    [49] He M, Xu M, Ren Y et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).

    [50] Zhou Y Y, Zhou L J, Su F R et al. Linearity measurement of a silicon single-drive push-pull Mach-Zehnder modulator[C], 15379988(2015).

    [51] Feng H K, Zhang K, Sun W Z et al[EB/OL]. Ultra-high-linearity integrated lithium niobate electro-optic modulators. https://arxiv.org/abs/2202.12739

    [52] Li S Y, Wu C Q, Liu L L et al. Research on drift of zero-point-voltage in lithium niobate Mach-Zehnder modulator[J]. Semiconductor Optoelectronics, 36, 968-972(2015).

    [53] Fan L W, Meng Z, Sun Q et al. Operating points control for Mach-Zehnder electro-optic modulator[J]. Chinese Journal of Lasers, 41, 0905001(2014).

    [54] Zhou Y, Qiu W, Chen Y X. Temperature stability of integrated optical asymmetric Mach-Zehnder modulators[J]. Chinese Journal of Lasers, 21, 102-105(1994).

    [55] Sun S H, He M B, Xu M Y et al. Bias-drift-free Mach-Zehnder modulators based on a heterogeneous silicon and lithium niobate platform[J]. Photonics Research, 8, 1958-1963(2020).

    [56] Sun S H, Cai X L. High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (invited)[J]. Infrared and Laser Engineering, 50, 20211047(2021).

    [57] Qin Y Y, Wu L S, Chen Z X et al. Research progress of thin-film lithium niobate electro-optic modulators[J]. Optoelectronic Technology, 41, 159-166(2021).

    [58] Yang F, Fang X S, Chen X Y et al. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth[J]. Chinese Optics Letters, 20, 022502(2022).

    Zixi Liu, Cheng Zeng, Jinsong Xia. Research Progress on High-Linearity Electro-Optical Modulators[J]. Chinese Journal of Lasers, 2022, 49(12): 1206001
    Download Citation