• Photonics Research
  • Vol. 7, Issue 1, 50 (2019)
Xiaoqin Wu1、2, Yipei Wang3, Qiushu Chen1, Yu-Cheng Chen1, Xuzhou Li1, Limin Tong2, and Xudong Fan1、*
Author Affiliations
  • 1Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Department of Electrical & Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    DOI: 10.1364/PRJ.7.000050 Cite this Article Set citation alerts
    Xiaoqin Wu, Yipei Wang, Qiushu Chen, Yu-Cheng Chen, Xuzhou Li, Limin Tong, Xudong Fan. High-Q, low-mode-volume microsphere-integrated Fabry–Perot cavity for optofluidic lasing applications[J]. Photonics Research, 2019, 7(1): 50 Copy Citation Text show less
    References

    [1] X. Fan, I. M. White. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics, 5, 591-597(2011).

    [2] X. Fan, S. H. Yun. The potential of optofluidic biolasers. Nat. Methods, 11, 141-147(2014).

    [3] H.-J. Moon, Y.-T. Chough, K. An. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys. Rev. Lett., 85, 3161-3164(2000).

    [4] J. Schafer, J. Mondia, R. Sharma, Z. Lu, A. Susha, A. Rogach, L. Wang. Quantum dot microdrop laser. Nano Lett., 8, 1709-1712(2008).

    [5] Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, X. Fan. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl. Acad. Sci. USA, 107, 16039-16042(2010).

    [6] Y. Sun, X. Fan. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed., 51, 1236-1239(2012).

    [7] Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, X. Fan. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip, 13, 2679-2681(2013).

    [8] S. Nizamoglu, M. C. Gather, S. H. Yun. All-biomaterial laser using vitamin and biopolymers. Adv. Mater., 25, 5943-5947(2013).

    [9] A. Jonáš, M. Aas, Y. Karadag, S. Manioğlu, S. Anand, D. McGloin, H. Bayraktar, A. Kiraz. In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab Chip, 14, 3093-3100(2014).

    [10] M. Humar, A. Dobravec, X. Zhao, S. H. Yun. Biomaterial microlasers implantable in the cornea, skin, and blood. Optica, 4, 1080-1085(2017).

    [11] S. Balslev, A. Kristensen. Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt. Express, 13, 344-351(2005).

    [12] Z. Li, Z. Zhang, T. Emery, A. Scherer, D. Psaltis. Single mode optofluidic distributed feedback dye laser. Opt. Express, 14, 696-701(2006).

    [13] M. Gersborg-Hansen, A. Kristensen. Tunability of optofluidic distributed feedback dye lasers. Opt. Express, 15, 137-142(2007).

    [14] G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, A. M. Haghiri-Gosnet. A multicolor microfluidic droplet dye laser with single mode emission. Appl. Phys. Lett., 98, 111111(2011).

    [15] M. C. Gather, S. H. Yun. Single-cell biological lasers. Nat. Photonics, 5, 406-410(2011).

    [16] Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, H. S. Yoon. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams. Lab Chip, 11, 3182-3187(2011).

    [17] M. Humar, M. C. Gather, S. H. Yun. Cellular dye lasers: lasing thresholds and sensing in a planar resonator. Opt. Express, 23, 27865-27879(2015).

    [18] W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, X. Fan. Optofluidic laser array based on stable high-Q Fabry–Perot microcavities. Lab Chip, 15, 3862-3869(2015).

    [19] Q. Chen, Y. C. Chen, Z. Zhang, B. Wu, R. Coleman, X. Fan. An integrated microwell array platform for cell lasing analysis. Lab Chip, 17, 2814-2820(2017).

    [20] Y. C. Chen, Q. Chen, T. Zhang, W. Wang, X. Fan. Versatile tissue lasers based on high-Q Fabry–Perot microcavities. Lab Chip, 17, 538-548(2017).

    [21] C.-Y. Gong, Y. Gong, W.-L. Zhang, Y. Wu, Y.-J. Rao, G.-D. Peng, X. Fan. Fiber optofluidic microlaser with lateral single mode emission. IEEE J. Sel. Top. Quantum Electron., 24, 0900206(2018).

    [22] M. Humar, S. H. Yun. Intracellular microlasers. Nat. Photonics, 9, 572-576(2015).

    [23] P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, J. M. Smith. Femtoliter tunable optical cavity arrays. Opt. Lett., 35, 3556-3558(2010).

    [24] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel. A fiber Fabry–Perot cavity with high finesse. New J. Phys., 12, 065038(2010).

    [25] A. Muller, E. B. Flagg, J. R. Lawall, G. S. Solomon. Ultrahigh-finesse, low-mode-volume Fabry–Perot microcavity. Opt. Lett., 35, 2293-2295(2010).

    [26] A. A. Trichet, P. R. Dolan, D. James, G. M. Hughes, C. Vallance, J. M. Smith. Nanoparticle trapping and characterization using open microcavities. Nano Lett., 16, 6172-6177(2016).

    [27] S.-S. Wang, J. Fu, M. Qiu, K.-J. Huang, Z. Ma, L.-M. Tong. Modeling endface output patterns of optical micro/nanofibers. Opt. Express, 16, 8887-8895(2008).

    [28] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214-1220(2004).

    [29] X. Li, Z. Chen, A. Taflove, V. Backman. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express, 13, 526-533(2005).

    [30] Z. Chen, X. Li, A. Taflove, V. Backman. Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks. Appl. Opt., 45, 633-638(2006).

    [31] A. Kapitonov, V. Astratov. Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett., 32, 409-411(2007).

    [32] A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, V. Backman. Photonic nanojets. J. Comput. Theor. Nanosci., 6, 1979-1992(2009).

    [33] A. Fox, T. Li. Modes in a maser interferometer with curved and tilted mirrors. Proc. IEEE, 51, 80-89(1963).

    [34] K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna. Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots. Opt. Express, 14, 1094-1105(2006).

    [35] A. G. Fox, T. Li. Resonant modes in a maser interferometer. Bell Labs Tech. J., 40, 453-488(1961).

    [36] H. Kogelnik, T. Li. Laser beams and resonators. Appl. Opt., 5, 1550-1567(1966).

    [37] J. Arnaud, A. Saleh, J. Ruscio. Walk-off effects in Fabry–Perot diplexers. IEEE Trans. Microw. Theory. Tech., 22, 486-493(1974).

    [38] A. E. Siegman. Lasers, 428-430(1986).

    [39] S. M. Buck, H. Xu, M. Brasuel, M. A. Philbert, R. Kopelman. Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta, 63, 41-59(2004).

    [40] S. Yang, V. N. Astratov. Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere. Appl. Phys. Lett., 92, 261111(2008).

    [41] K. W. Allen, A. Darafsheh, F. Abolmaali, N. Mojaverian, N. I. Limberopoulos, A. Lupu, V. N. Astratov. Microsphere-chain waveguides: focusing and transport properties. Appl. Phys. Lett., 105, 021112(2014).

    [42] F. Abolmaali, A. Brettin, A. Green, N. I. Limberopoulos, A. M. Urbas, V. N. Astratov. Photonic jets for highly efficient mid-IR focal plane arrays with large angle-of-view. Opt. Express, 25, 31174-31185(2017).

    [43] A. Martinez, S. Yamashita. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt. Express, 19, 6155-6163(2011).

    [44] J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera. Quantum boxes as active probes for photonic microstructures: the pillar microcavity case. Appl. Phys. Lett., 69, 449-451(1996).

    CLP Journals

    [1] Guoqiang Gu, Pengcheng Zhang, Sihui Chen, Yi Zhang, Hui Yang. Inflection point: a perspective on photonic nanojets[J]. Photonics Research, 2021, 9(7): 1157

    Xiaoqin Wu, Yipei Wang, Qiushu Chen, Yu-Cheng Chen, Xuzhou Li, Limin Tong, Xudong Fan. High-Q, low-mode-volume microsphere-integrated Fabry–Perot cavity for optofluidic lasing applications[J]. Photonics Research, 2019, 7(1): 50
    Download Citation