• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 82808 (2018)
Huang Tiancheng1, Tao Bangyi1, He Yan2, Hu Shanjiang2, Yu Jiayong3, Li Qiang4, Zhu Yunfeng4, Yin Guoqing4, Huang Haiqing1, Zhu Qiankun1, and Gong Fang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/lop55.082808 Cite this Article Set citation alerts
    Huang Tiancheng, Tao Bangyi, He Yan, Hu Shanjiang, Yu Jiayong, Li Qiang, Zhu Yunfeng, Yin Guoqing, Huang Haiqing, Zhu Qiankun, Gong Fang. Waveform Processing Methods in Domestic Airborne Lidar Bathymetry System[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82808 Copy Citation Text show less
    References

    [1] Huang W J, Li S. The perfect scanning configurations of laser-based airborne hydrographic system[J]. Laser Journal, 2001, 22(6): 54-56.

    [2] Shi Z W, Yang F L, Liu X, et al. Brief airborne laser bathymetry system and its application in seabed classification[J]. China Water Transport, 2013(10): 292-295.

    [3] Zhai G J, Wu T Q,Ouyang Y Z, et al. The development of airborne laser bathymetry, hydrographic surveying and charting[J]. Hydrographic Surveying and Charting, 2012, 32(2): 67-71.

    [4] Zhai G J, Wang K P, Liu Y H, et al. Technology of airborne laser bathymetry[J]. Hydrographic Surveying and Charting, 2014, 34(2): 72-75.

    [5] Ma L. Technical equipment for airborne Lidar bathymetry system[J]. Geomatics Technology and Equipment, 2003, 5(2): 39-42.

    [6] Li K, Zhang Y S, Liu X D, et al. Study on airborne laser bathymetric system receiver field of view[J]. Acta Optica Sinica, 2015, 35(7): 0701005.

    [7] Huang T C, Tao B Y, Mao Z H, et al. Utilization of multi-channel ocean LiDAR data to classify sea and land waveform[J]. Chinese Journal of Lasers, 2017, 44(6): 0610002.

    [8] Yao C H, Chen W B, Zang H G, et al. Study of the capability of minimum depth using an airborne laser bathymetry[J]. Acta Optica Sinica, 2004, 24(10): 1406-1410.

    [9] Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.

    [10] Pe'eri S, Morgan L V, Philpot W D, et al. Land-water interface resolved from airborne LIDAR bathymetry (ALB) waveforms[J]. Journal of Coastal Research, 2011(62): 75-85.

    [11] Ma H C, Li Q. Modified EM algorithm and its application to the decomposition of laser scanning waveform data[J]. Journal of Remote Sensing, 2009, 13(1): 35-41.

    [12] Wang J H. Research on the key techniques of the airborne LIDAR data processing[D]. Wuhan: Huazhong University of Science & Technology, 2012.

    [13] Ye X S. Research on principle and data processing methods of airborne laser bathymetric technique[D]. Zhengzhou: PLA Information Engineering University, 2010.

    [14] Wang C, Li Q, Liu Y, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2015, 101: 22-35.

    [15] Liu Y X, Guo K, He X F, et al. Research progress of airborne laser bathymetry technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1185-1194.

    [16] Hofton M, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(4): 1989-1996.

    [17] Li P C. The technology of terrain and building reconstruction using airborne full-waveform LiDAR data[D]. Zhengzhou: PLA Information Engineering University, 2015.

    [18] Parrish C E, Jeong I, Nowak R D, et al. Empirical comparison of full-waveform lidar algorithms[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(8): 825-838.

    [19] Huang T, Tao B, Chen P, et al. Utilization of multi-channel ocean LiDAR data to classify the types of waveform[J]. Proceedings of SPIE, 2017, 10422: 104221I.

    [20] Wang Y J, Fan C Y, Wei H L. Laser transmission and application in the atmosphere and seawater[M]. Beijing: National Defense Industry Press, 2015.

    [21] Lucy L B. An iterative technique for the rectification of observed distributions[J]. Journal of Astronomy, 1974, 79(6): 745-754.

    [22] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener filter[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 61(2): 95-107.

    [23] Wang D D, Lin Y Z, Lin P C. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaeticaet Cartographica Sinica, 2018, 47(2): 161-169.

    [24] Ye X S, Huang M T, Ouyang Y Z, et al. Application of Raman backscattered in detecting sea level and distinguishing sea with terrene[J]. Hydrographic Surveying and Charting, 2008, 28(6): 13-14.

    [25] Feng S Z. Introduction of marine science[M]. Beijing: Higher Education Press, 1999.

    [26] Zhu J, Zang H G, He Y, et al. Study on large dynamic range compression in airborne laser bathymetry[J]. Acta Optica Sinica, 2006, 26(8): 1172-1176.

    [27] He X S, Zhu X, Tan X S, et al. Research on the transmission delay of laser pulse caused by the sea water scattering effects[J]. Laser & Infrared, 2001, 31(1): 19-21.

    CLP Journals

    [1] Jin Dingjian, Wu Fang, Yu Kun, Li Qi, Zhang Zonggui, Zhang Yongjun, Zhang Wenkai, Li Yongzhi, Ji Xinyang, Gao Yu, Li Jing, Gong Jianhua. Large-scale application test and evaluation of an airborne lidar bathymetry system-A case study in China′s coastal zone[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200317

    Huang Tiancheng, Tao Bangyi, He Yan, Hu Shanjiang, Yu Jiayong, Li Qiang, Zhu Yunfeng, Yin Guoqing, Huang Haiqing, Zhu Qiankun, Gong Fang. Waveform Processing Methods in Domestic Airborne Lidar Bathymetry System[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82808
    Download Citation