• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111409 (2020)
Yansheng Yao1、3、*, Zhangsen Ge1、2, Qingbo Chen1, Jianping Tang1、2, and Yiyuan Zhang2
Author Affiliations
  • 1College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhuui 230601, China
  • 2Micro-Nano Engineering Laboratory, University of Science and Technology of China, Hefei, Anhui 230022, China
  • 3Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei, Anhui 230601, China
  • show less
    DOI: 10.3788/LOP57.111409 Cite this Article Set citation alerts
    Yansheng Yao, Zhangsen Ge, Qingbo Chen, Jianping Tang, Yiyuan Zhang. Surface Characteristics of Medical Zr-Based Bulk Metallic Glass Processed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111409 Copy Citation Text show less
    References

    [1] Asgharzadeh Shirazi H, Ayatollahi M R, Asnafi A. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials[J]. Computer Methods in Biomechanics and Biomedical Engineering, 20, 750-759(2017).

    [2] Li H F, Zheng Y F. Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomaterialia, 36, 1-20(2016).

    [3] Schulze C, Weinmann M, Schweigel C et al. Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb[J]. Materials, 11, 124(2018).

    [4] Ida H, Seiryu M, Takeshita N et al. Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application[J]. Acta Biomaterialia, 74, 505-517(2018).

    [5] Yu Z, Zhang W J, Hu J. Micromachining of titanium alloy implant by picosecond laser surface texturing and alloy biocompatibility[J]. Chinese Journal of Lasers, 44, 0102014(2017).

    [6] Huang R, Wang Q P, Zhang L et al. Effect of surface microroughening of titanium alloy on osteoblast adhesion and proliferation behavior[J]. Materials Review, 31, 156-159(2017).

    [7] Chen J C, Ko C L, Lin D J et al. In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration[J]. Journal of the Australian Ceramic Society, 55, 799-806(2019).

    [8] Feng A L, Han Y. Research progress of surface modification of biomedical magnesium[J]. Chemical Industry and Engineering Progress, 30, 1778-1784(2011).

    [9] Shao M Z, Cui C J, Yang H B. Surface oxidation as the modification technique of NiTi shape memory alloys for medical application: a technological review[J]. Materials Review, 32, 1181-1186(2018).

    [10] Sun G F, Tao F, Jiang B et al. Microstructure andbiomedical properties of laser alloyed Cu-Co alloys on medical stainless steel[J]. Chinese Journal of Lasers, 45, 1202008(2018).

    [11] Lu L B, Wang H P, Guan Y C et al. Laser microfabrication of biomedical devices[J]. Chinese Journal of Lasers, 44, 0102005(2017).

    [12] Miyauchi T, Yamada M, Yamamoto A et al. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces[J]. Biomaterials, 31, 3827-3839(2010).

    [13] Yang Q B, Chen Z P, Yang T et al. Surface wettability of different micro-textured YG6 processed by femtosecond lasers[J]. Laser & Optoelectronics Progress, 55, 091404(2018).

    [14] Ma G F[M]. Metallic glass and wettability of surface(2010).

    [15] Qiu Y J, Li J Z, Li C Y et al. High-throughput digital capillary microarray[J]. Optics and Precision Engineering, 27, 1237-1244(2019).

    [16] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 48, 279-306(2000).

    [17] Li J, Shi L L, Zhu Z D et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses[J]. Materials Science and Engineering: C, 33, 2113-2121(2013).

    [18] Wang C Y. Research of surface bioactivation on titanium substrate implant[D]. Nanjing: Nanjing University of Aeronautics and Astronautics(2015).

    [19] Liu J, Xue X Y. XPS study on oxidation scale of Ti-42Al-8Nb TiAl alloys[J]. Rare Metal Materials and Engineering, 45, 2635-2641(2016).

    [20] Velayi E, Norouzbeigi R. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces[J]. Applied Surface Science, 441, 156-164(2018).

    [21] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 47, 0102003(2020).

    [22] Wu H. Room temperature plasticity and tribological behavior of Zr-based bulk metallic glass[D]. Changsha: Central South University(2011).

    Yansheng Yao, Zhangsen Ge, Qingbo Chen, Jianping Tang, Yiyuan Zhang. Surface Characteristics of Medical Zr-Based Bulk Metallic Glass Processed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111409
    Download Citation