• Photonics Research
  • Vol. 6, Issue 5, B13 (2018)
Ming Li1, Lin Zhang2, Li-Min Tong1, and Dao-Xin Dai1、*
Author Affiliations
  • 1Centre for Optical and Electromagnetic Research, JORCEP, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
  • 2Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.1364/PRJ.6.000B13 Cite this Article Set citation alerts
    Ming Li, Lin Zhang, Li-Min Tong, Dao-Xin Dai. Hybrid silicon nonlinear photonics [Invited][J]. Photonics Research, 2018, 6(5): B13 Copy Citation Text show less
    References

    [1] L. Tsybeskov, D. J. Lockwood, M. Ichikawa. Silicon photonics: CMOS going optical [scanning the issue]. Proc. IEEE, 97, 1161-1165(2009).

    [2] T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, J. Leuthold. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. Opt. Express, 17, 17357-17368(2009).

    [3] C. K. J. Leuthold, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [4] M. Lipson. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol., 23, 4222-4238(2005).

    [5] Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, O. Cohen. Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides. Opt. Express, 14, 11721-11726(2006).

    [6] M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta. Silicon-chip-based ultrafast optical oscilloscope. Nature, 456, 81-84(2008).

    [7] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [8] J. T. Robinson, L. Chen, M. Lipson. On-chip gas detection in silicon optical microcavities. Opt. Express, 16, 4296-4301(2008).

    [9] T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, A. Scherer. Optical modulation and detection in slotted silicon waveguides. Opt. Express, 13, 5216-5226(2005).

    [10] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 15, 12949-12958(2007).

    [11] R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express, 11, 1731-1739(2003).

    [12] T. Liang, H. Tsang. Efficient Raman amplication in silicon-on-insulator waveguides. Appl. Phys. Lett., 85, 3343-3345(2004).

    [13] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia. An all-silicon Raman laser. Nature, 433, 292-294(2005).

    [14] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [15] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 10, 463-467(2016).

    [16] H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, M. Asghari. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength. Appl. Phys. Lett., 80, 416-418(2002).

    [17] G. W. Rieger, K. S. Virk, J. F. Young. Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides. Appl. Phys. Lett., 84, 900-902(2004).

    [18] I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood. Supercontinuum generation in silicon photonic wires. Opt. Express, 15, 15242-15249(2007).

    [19] L. Yin, Q. Lin, G. P. Agrawal. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett., 32, 391-393(2007).

    [20] T. Baba. Slow light in photonic crystals. Nat. Photonics, 2, 465-473(2008).

    [21] B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 3, 206-210(2009).

    [22] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun., 4, 1944(2013).

    [23] W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, Z. Wang. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express, 21, 31402-31419(2013).

    [24] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 8, 15819(2017).

    [25] R. Dekker, N. Usechak, M. Forst, A. Driessen. Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides. J. Phys. D, 40, R249-R271(2007).

    [26] R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Strained silicon as a new electro-optic material. Nature, 441, 199-202(2006).

    [27] C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, J. Schilling. Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces. Adv. Opt. Mater., 3, 129-136(2015).

    [28] M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater., 11, 148-154(2011).

    [29] N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali. Periodically poled silicon. Appl. Phys. Lett., 94, 091116(2009).

    [30] E. Timurdogan, C. V. Poulton, M. J. Byrd, M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    [31] R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, O. Cohen. Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express, 13, 519-525(2005).

    [32] H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nat. Photonics, 1, 232-237(2007).

    [33] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadéld, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson. Photon pair generation in silicon micro-ring resonator with reverse bias enhancement. Opt. Express, 21, 27826-27834(2013).

    [34] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, M. Paniccia. 40  Gbit/s silicon optical modulator for high-speed applications. Electron. Lett., 43, 1196-1197(2007).

    [35] M. P. Nielsen, A. Y. Elezzabi. Ultrafast all-optical modulation in a silicon nanoplasmonic resonator. Opt. Express, 21, 20274-20279(2013).

    [36] T. J. Duffin, M. P. Nielsen, F. Diza, S. Palomba, S. A. Maier, R. F. Oulton. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides. Opt. Lett., 41, 155-158(2016).

    [37] I. D. Rukhlenko, M. Premaratne, G. P. Agrawal. Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Opt. Express, 19, 206-217(2011).

    [38] D. Dai, S. He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express, 17, 16646-16653(2009).

    [39] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [40] M. A. Foster, K. D. Moll, A. L. Gaeta. Optimal waveguide dimensions for nonlinear interactions. Opt. Express, 12, 2880-2887(2004).

    [41] M. Jazbinsek, L. Mutter, P. Gunter. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quantum Electron., 14, 1298-1311(2008).

    [42] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold. 42.7  Gbit/s electro-optic modulator in silicon technology. Opt. Express, 19, 11841-11851(2011).

    [43] M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer. Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express, 15, 8401-8410(2007).

    [44] T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, A. Scherer. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V. Appl. Phys. Lett., 92, 163303(2008).

    [45] L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, J. Leuthold. Second-order nonlinear silicon-organic hybrid waveguides. Opt. Express, 20, 20506-20515(2012).

    [46] A. D. Bristow, N. Rotenberg, H. M. Van Driel. Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm. Appl. Phys. Lett., 90, 191104(2007).

    [47] T. Wang, N. Venkatram, G. Chen, W. Ji, D. T. H. Tan. Optical nonlinearity in silicon at mid-infrared wavelengths. Conference on Lasers and Electro-Optics, STu1I.1(2014).

    [48] C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, W. Freude. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express, 15, 5976-5990(2007).

    [49] W. Zhang, S. Serna, N. Dubreuil, E. Cassan. Nonlinear optimization of slot Si waveguides: TPA minimization with FOM TPA up to 4.25. Opt. Lett., 40, 1212-1215(2015).

    [50] T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, F. Diederich. A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. Chem. Commun., 6, 737-739(2005).

    [51] J. C. May, I. Biaggio, F. Bures, F. Diederich. Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules. Appl. Phys. Lett., 90, 251106(2007).

    [52] B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, I. Biaggio. A high-optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater., 20, 4584-4587(2008).

    [53] J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, C. Koos. Silicon organic hybrid technology: a platform for practical nonlinear optics. Proc. IEEE, 97, 1304-1316(2009).

    [54] L. An, H. Liu, Q. Sun, N. Huang, Z. Wang. Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides. Appl. Opt., 53, 4886-4893(2014).

    [55] T. Vallaitis, C. Heine, R. Bonk, W. Freude, J. Leuthold, C. Koos, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, P. Dumon, R. Baets. All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide. Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OWS3(2009).

    [56] S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, S. G. Boxer. Large molecular third-order optical nonlinearities in polarized carotenoids. Science, 276, 1233-1236(1997).

    [57] L. Brozozowski, E. H. Sargent. Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci., 12, 483-489(2001).

    [58] M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, A. Scherer. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater., 5, 703-709(2006).

    [59] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [60] A. Zarifi, A. C. Bedoya, B. Morrison, Y. Zhang, G. Ren, T. Nguyen, S. Madden, K. Vu, A. Mitchell, C. Wolff, D. Marpaung, B. J. Eggleton. Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide. Nonlinear Photonics, NM4A.6(2016).

    [61] Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi. Silicon nanocrystals as an enabling material for silicon photonics. Proc. IEEE, 97, 1250-1268(2009).

    [62] J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, C. J. Oton. Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides. Opt. Express, 20, 23838-23845(2012).

    [63] T. Wu, P. P. Shum, X. Shao, T. Huang, Y. Sun. Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide. Opt. Express, 22, 24367-24377(2014).

    [64] I. D. Rukhlenko, V. Kalavally. Raman amplification in silicon-nanocrystal waveguides. J. Lightwave Technol., 32, 130-134(2014).

    [65] A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Marti. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett., 10, 1506-1511(2010).

    [66] Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, P. K. A. Wai. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide. Sci. Rep., 4, 7177(2014).

    [67] Q. Liu, S. Gao, Z. Li, Y. Xie, S. He. Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl. Opt., 50, 1260-1265(2011).

    [68] V. M. N. Passaro, F. De Leonardis, A. G. Perri. Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing. IEEE Sens. J., 12, 2776-2783(2012).

    [69] H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, D. L. Huffaker. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett., 16, 1833-1839(2016).

    [70] B. Chen, H. Wu, C. Xin, D. Dai, L. Tong. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun., 8, 20(2017).

    [71] H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, C. M. Lieber. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics, 2, 622-626(2008).

    [72] P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, C.-Z. Ning. CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett., 15, 909-916(2015).

    [73] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, P. Yang. Tunable nanowire nonlinear optical probe. Nature, 447, 1098-1101(2007).

    [74] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [75] S. Yu, X. Wu, Y. Wang, X. Guo, L. Tong. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 29, 14(2017).

    [76] Z. Cheng, H. K. Tsang, K. Xu, Z. Shi. Spectral hole burning in silicon waveguides with a graphene layer on top. Opt. Lett., 38, 1930-1932(2013).

    [77] Z. Cheng, H. K. Tsang, X. Wang, K. Xu, J. B. Xu. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron., 20, 43-48(2014).

    [78] L. Yu, J. Zheng, Y. Xu, D. Dai, S. He. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 8, 11386-11393(2014).

    [79] C. Horvath, D. Bachman, R. Indoe, V. Van. Photo-thermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Opt. Lett., 38, 5036-5039(2013).

    [80] H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, D. N. Neshev. Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration. Light Sci. Appl., 6, e17060(2017).

    [81] L. Liu, K. Xu, X. Wan, J. Xu, C. Y. Wong, H. K. Tsang. Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides. Photon. Res., 3, 206-209(2015).

    [82] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 15, 5302-5306(2015).

    [83] Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, C. Z. Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol., 12, 987-992(2017).

    [84] T. K. Fryett, K. L. Seyler, J. Zheng, C.-H. Liu, X. Xu. Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2(2016).

    [85] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69-72(2015).

    [86] J. B. Khurgin. Graphene–a rather ordinary nonlinear optical material. Appl. Phys. Lett., 104, 161116(2014).

    [87] T. Fryett, A. Zhan, A. Majumdar. Cavity nonlinear optics with layered materials(2017).

    [88] T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics, 6, 554-559(2012).

    [89] D. J. Moss, L. Fu, I. Littler, B. Eggleton. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron. Lett., 41, 320-321(2005).

    [90] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan. High speed graphene transistors with a self-aligned nanowire gate. Nature, 467, 305-308(2010).

    [91] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [92] Z. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 10, 227-238(2016).

    [93] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 4, 839-843(2009).

    [94] Y. Liu, H. K. Tsang. Time dependent density of free carriers generated by two photon absorption in silicon waveguides. Appl. Phys. Lett., 90, 211105(2007).

    CLP Journals

    [1] Yuhao Guo, Zeinab Jafari, Lijuan Xu, Changjing Bao, Peicheng Liao, Guifang Li, Anuradha M. Agarwal, Lionel C. Kimerling, Jurgen Michel, Alan E. Willner, Lin Zhang. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics[J]. Photonics Research, 2019, 7(11): 1279

    [2] Lu Wang, Xuefei Zhou, Shuo Yang, Gaoshan Huang, Yongfeng Mei. 2D-material-integrated whispering-gallery-mode microcavity[J]. Photonics Research, 2019, 7(8): 905

    [3] Lei Liu, Limin Chang, Yingxin Kuang, Zezheng Li, Yang Liu, Huan Guan, Manqing Tan, Yude Yu, Zhiyong Li. Low-cost hybrid integrated 4 × 25 GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer[J]. Photonics Research, 2019, 7(7): 722

    Ming Li, Lin Zhang, Li-Min Tong, Dao-Xin Dai. Hybrid silicon nonlinear photonics [Invited][J]. Photonics Research, 2018, 6(5): B13
    Download Citation