• Infrared and Laser Engineering
  • Vol. 52, Issue 7, 20220872 (2023)
Kaikai Wu1、2, Boya Xie1, Lin Chen1, Songqing You1、2, Zhewen Xiong2, and Peng Yang2
Author Affiliations
  • 1School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
  • 2Optoelectronic Laboratory for Intelligent Sensing and Object Recognition, School of Electrical and Electronic Information Engineering, Hubei Polytechnic University, Huangshi 435003, China
  • show less
    DOI: 10.3788/IRLA20220872 Cite this Article
    Kaikai Wu, Boya Xie, Lin Chen, Songqing You, Zhewen Xiong, Peng Yang. Optical measurement method of shot noise limit micro-vibration based on optical polarization control[J]. Infrared and Laser Engineering, 2023, 52(7): 20220872 Copy Citation Text show less
    Measurement model of object micro-vibration signal
    Fig. 1. Measurement model of object micro-vibration signal
    Numerical simulation results of vibration displacement
    Fig. 2. Numerical simulation results of vibration displacement
    Experimental optical path for measuring micro-vibration signal of object
    Fig. 3. Experimental optical path for measuring micro-vibration signal of object
    (a) Optical path of frequency shift optical; (b) Physical diagram of AOM; (c) 5.5 MHz beat frequency test results
    Fig. 4. (a) Optical path of frequency shift optical; (b) Physical diagram of AOM; (c) 5.5 MHz beat frequency test results
    (a) Micro-vibration signal optical path diagram; (b) Physical diagram of PZT; (c) Vibration displacement calibration of PZT
    Fig. 5. (a) Micro-vibration signal optical path diagram; (b) Physical diagram of PZT; (c) Vibration displacement calibration of PZT
    (a) Balanced heterodyne detection optical path; (b) Balanced detector
    Fig. 6. (a) Balanced heterodyne detection optical path; (b) Balanced detector
    (a) Noise power spectrum data of Span=10 MHz; (b) Experimental optical path
    Fig. 7. (a) Noise power spectrum data of Span=10 MHz; (b) Experimental optical path
    Noise power of local oscillator light
    Fig. 8. Noise power of local oscillator light
    Noise power of vibration signals from 2-10 Hz
    Fig. 9. Noise power of vibration signals from 2-10 Hz
    No.Test conditions
    1Local-oscillator power: 2 mW/4 mW/8 mW
    2Modulation frequency of AOM1: 80 MHz
    3Modulation frequency of AOM1: 85.5 MHz
    4Center frequency of spectrometer: 5.5 MHz
    5Spectrum analyzer bandwidth: 100 Hz
    6Resolution bandwidth of spectrometer: 1 Hz
    7Video bandwidth of spectrometer: 1 Hz
    8Average count: 100
    9Optical heterodyne contrast: 0.9
    10System optical power correction value: 0.63
    11Detector quantum efficiency: 0.69
    12Receiver feedback resistance: 5 kΩ
    13Receiver load resistance: 50 Ω
    14PZT amplitude modulation: 1 Vpp
    15PZT waveform modulation: Triangle wave
    16PZT frequency modulation: 2-10 Hz
    Table 1. Test conditions for noise power measurement
    $ f $/Hz $\varGamma$$ \Delta {L_{ex}} $/nm ${P_S}/$$10^{ - 18} \;{\rm{W}}$
    20.005111.991.23
    30.004611.340.97
    40.004711.471.01
    50.004611.341.03
    60.004811.601.18
    70.004411.080.96
    80.004711.471.07
    90.004611.341.09
    100.004611.341.04
    Avg0.0046811.441.06
    Table 2. Experimental results from 2-10 Hz
    Kaikai Wu, Boya Xie, Lin Chen, Songqing You, Zhewen Xiong, Peng Yang. Optical measurement method of shot noise limit micro-vibration based on optical polarization control[J]. Infrared and Laser Engineering, 2023, 52(7): 20220872
    Download Citation