• Matter and Radiation at Extremes
  • Vol. 2, Issue 4, 149 (2017)
S. Weber*, S. Bechet, S. Borneis, L. Brabec, M. Bucka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.-R. Garcia, J. Grosz, Y.-J. Gu, J.-C. Hernandez, M. Holec, P. Janecka, M. Jantac, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovicka, P. Lutoslawski, L. Morejon, V. Olsovcova, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Smid, M. Sokol, R. Versaci, R. Vrana, M. Vranic, J. Vyskocil, A. Wolf, and Q. Yu
Author Affiliations
  • ELI-Beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague, Czech Republic
  • show less
    DOI: 10.1016/j.mre.2017.03.003 Cite this Article
    S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bucka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.-R. Garcia, J. Grosz, Y.-J. Gu, J.-C. Hernandez, M. Holec, P. Janecka, M. Jantac, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovicka, P. Lutoslawski, L. Morejon, V. Olsovcova, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Smid, M. Sokol, R. Versaci, R. Vrana, M. Vranic, J. Vyskocil, A. Wolf, Q. Yu. P3: An installation for high-energy density plasma physics and ultra-high intensity laserematter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149 Copy Citation Text show less
    References

    [1] D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Opt. Comm. 56 (1985) 219.

    [2] G. Mourou, C. Barty, M. Perry, Ultrahigh-intensity lasers: physics of the extreme on a tabletop, Phys. Today 51 (1998) 22.

    [3] A. Dubietis, G. Jonusauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Comm. 88 (1992) 437.

    [4] Extreme Light Infrastructure: http://www.eli-laser.eu.

    [5] B. LeGarrec, S. Sebban, D. Margarone, M. Precek, S. Weber, et al., Elibeamlines: extreme light infrastructure science and technology with ultra-intense lasers, Proc. SPIE 8962 (2014) 8962OI.

    [6] B. Rus, P. Bakule, D. Kramer, J. Naylon, J. Thoma, et al., Eli-beamlines: development of next generation short-pulse laser systems, Proc. SPIE 9515 (2015) 9515OF.

    [7] Extreme Light Infrastructure Beamlines: http://www.eli-beams.eu.

    [8] G. Mourou, G. Korn, W. Sandner, J. Collier (Eds.), ELI Extreme Light Infrastructure (Whitebook), THOSS Media GmbH, Berlin, Germany, 2011.

    [9] S.V. Lebedev (Ed.), High Energy Density Laboratory Astrophysics, Springer Verlag Berlin, Germany, 2007.

    [10] S. Bulanov, T. Esirkepov, M. Kando, J. Koga, K. Kondo, et al., On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers, Plasma Phys. Rep. 41 (2015) 1.

    [11] D. Ryutov, R. Drake, B. Remington, Criteria for scaled laboratory simulations of astrophysical MHD phenomena, Astrophys. J. 127 (2000) 465.

    [12] B. Remington, D. Arnett, R. Drake, H. Takabe, Modeling astrophysics phenomena in the laboratory with intense lasers, Science 284 (1999) 1488.

    [13] C. Li, P. Tzeferacos, D. Lamb, G. Gregori, P. Norreys, et al., Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet, Nat. Comm. 7 (2016) 13081.

    [14] M. Marklund, P. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys. 78 (2006) 591.

    [15] G. Mourou, T. Tajima, S. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78 (2006) 309.

    [16] Y. Salamin, S. Hu, K. Hatsagortsyan, C. Keitel, Relativistic high-power laser-matter interaction, Phys. Rep. 427 (2006) 41.

    [17] T. Brabec (Ed.), Strong Field Laser Physics, Springer Verlag, 2008.

    [18] A. DiPiazza, C. Mu¨ ller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177.

    [19] DOE Office of Science and National Nuclear Security Administration, Basic Research Needs for High Energy Density Density Laboratory Physics, US Department of Energy, 2009.

    [20] R. Drake, High-energy-density-physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, Springer Verlag Berlin, Germany, 2006.

    [21] F. Graziani, M. Desjarlais, R. Redmer, S. Trickey (Eds.), Frontiers and Challenges in Warm Dense Matter, Springer International Publishing, Berlin, Germany, 2014.

    [22] R. Kirkwood, J. Moody, J. Kline, E. Dewald, S. Glenzer, et al., A review of laser-plasma interaction physics of indirect-drive fusion,, Plasma. Phys. control. Fusion 55 (2013) 103001.

    [23] S. Weber, C. Riconda, Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion, High. Power Laser Sci. Eng. 3 (2015) e6.

    [24] C. Riconda, S. Weber, Raman-Brillouin interplay for inertial confinement fusion relevant laser-plasma interaction, High. Power Laser Sci. Eng. 4 (2016) e23.

    [25] J. Fuchs, A. Gonoskov, M. Nakatsutsumi, W. Nazarov, F. Qu er e, et al., Plasma devices for focusing extreme light pulses, Eur. Phys. J. Spec. Top. 223 (2014) 1169.

    [26] G. Lehmann, K. Spatschek, Transient plasma photonic crystals for highpower lasers, Phys. Rev. Lett. 116 (2016) 225002.

    [27] B. Gonzalez-Izquierdo, R. Gray, M. King, R. Dance, R. Wilson, et al., Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction, Nat. Phys. 12 (2016) 505.

    [28] R. Clarke, S. Dorkings, R. Heathcote, K. Markey, D. Neely, Proton activation history on the vulcan high-intensity petawatt laser facility, Laser Part. Beams 32 (2014) 455.

    [29] T. Bohlen, F. Cerutti, M. Chin, A. Fass o, A. Ferrari, et al., The fluka code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211.

    [30] A. Ferrari, P. Sala, A. Fass o, J. Ranft, Fluka: a multi-particle transport code, Tech. Rep., CERN-2005-10, 2005. INFN/TC_05/11, SLAC-R- 773(2005).

    [31] V. Vlachoudis, Flair: A Powerful but User Friendly Graphical Interface for Fluka, Tech. rep., Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), vol. 2009, Saratoga Springs, New York, 2009. URL, http://www.fluka.org/flair/Flair_MC2009.pdf.

    [32] Protection of the public in situations of prolonged radiation exposure, Tech. Rep., ICRP Publication 82, Ann. ICRP 29 (1e2) (1999).

    [33] Czech Republic Decree No. 307/2002 Coll. On Radiation Protection.

    [34] F. Sylla, M. Veltcheva, S. Kahaly, A. Flacco, V. Malka, Development and characterization of very dense submillimetric gas jets for laserplasma interaction, Rev. Sci. Instrum. 83 (2012) 033507.

    [35] S. Garcia, D. Chatain, J. Perin, Continuous production of a thin ribbon of solid hydrogen, Laser Part. Beams 32 (2014) 569.

    [36] D. Ryutov, R.P. Drake, J. Kane, E. Liang, B.A. Remington, et al., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J. 518 (1999) 821.

    [37] D.D. Ryutov, B.A. Remington, H.F. Robey, R.P. Drake, Magnetohydrodynamic scaling: from astrophysics to the laboratory, Phys. Plasmas 8 (2001) 1804.

    [38] D. Ryutov, N. Kugland, H. Park, C. Plechaty, B. Remington, et al., Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field, Plasma Phys. Control. Fusion 54 (2012) 105021.

    [39] P.M. Nilson, L. Willingale, M.C. Kaluza, C. Kamperidis, S. Minardi, et al., Phys. Rev. Lett. 97 (2006) 255001.

    [40] W. Fox, G. Fiksel, A. Bhattacharjee, P.-Y. Chang, K. Germaschewski, et al., Filamentation instability of counterstreaming laser-driven plasmas, Phys. Rev. Lett. 111 (2013) 225002.

    [41] C.K. Li, D.D. Ryutov, S.X. Hu, M.J. Rosenberg, A.B. Zylstra, et al., Structure and dynamics of colliding plasma jets, Phys. Rev. Lett. 111 (2013) 235003.

    [42] E.C. Harding, J.F. Hansen, O.A. Hurricane, R.P. Drake, H.F. Robey, et al., Observation of a kelvin-helmholtz instability in a high-energydensity plasma on the omega laser, Phys. Rev. Lett. 103 (2009) 045005.

    [43] J. Yoo, M. Yamada, H. Ji, C. Myers, Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma, Phys. Rev. Lett. 110 (2013) 215007.

    [44] Y. Gu, O. Klimo, D. Kumar, Y. Liu, S. Singh, et al., Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses, Phys. Rev. E 93 (2016) 013203.

    [45] Y. Gu, Q. Yu, O. Klimo, T. Esirkepov, S. Bulanov, et al., Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes, High. Power Laser Sci. Eng. 4 (2016) e19.

    [46] Y. Gu, O. Klimo, D. Kumar, S. Bulanov, T. Esirkepov, et al., Fast magnetic field annihilation driven by two laser pulses in underdense plasma, Phys. Plasmas 22 (2015) 103113.

    [47] J. Workman, J.R. Fincke, P. Keiter, G.A. Kyrala, Development of intense point x-ray sources for backlighting high energy density experiments, Rev. Sci. Instrum. 3915 (2004).

    [48] H.-S. Park, D.M. Chambers, H.-K. Chung, R.J. Clarke, R. Eagleton, et al., High-energy ka radiography using high-intensity, short-pulse lasers, Phys. Plasmas 13 (2006) 056309.

    [49] A. Ovchinnikov, O. Kostenko, O. Chefonov, O. Rosmej, N. Andreev, et al., Characteristic x-rays generation under the action of femtosecond laser pulses on nano-structured targets, Laser Part. Beams 29 (2011) 249.

    [50] M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, et al., Relativistic plasma nanophotonics for ultrahigh energy density physics, Nat. Photonics 7 (2013) 796.

    [51] S. Glenzer, R. Redmer, X-ray thomson scattering in high energy density plasmas, Rev. Mod. Phys. 81 (2009) 1625.

    [52] P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2003) 125004.

    [53] S. Mangles, C.D. Murphy, Z. Najmudin, A. Thomas, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (2004).

    [54] C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier- Michel, et al., Plasma-density-gradient injection of low absolutemomentum- spread electron bunches, Phys. Rev. Lett. 100 (2008) 215004.

    [55] Z.-H. He, A.G.R. Thomas, B. Beaurepaire, J.A. Nees, B. Hou, et al., Electron diffraction using ultrafast electron bunches from a laserwakefield accelerator at khz repetition rate, Appl. Phys. Lett. 102 (2013).

    [56] H. Habara, K. Ohta, K.A. Tanaka, G.R. Kumar, M. Krishnamurthy, et al., Direct, absolute, and in Situ measurement of fast electron transport via cherenkov emission, Phys. Rev. Lett. 104 (2010) 055001.

    [57] M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, et al., Bright laserdriven neutron source based on the relativistic transparency of solids, Phys. Rev. Lett. 110 (2013) 044802.

    [58] N. Guler, P. Volegov, A. Favalli, F.E. Merrill, K. Falk, et al., Neutron imaging with the short-pulse laser driven neutron source at the trident laser facility, J. Appl. Phys. 120 (2016) 154901.

    [59] T. Guillot, Interiors of giant planets inside and outside the solar system, Science 286 (5437) (1999) 72.

    [60] Nuckolls, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139.

    [61] R.L. McCrory, D.D. Meyerhofer, S.J. Loucks, S. Skupsky, R. Betti, et al., Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics, Eur. Phys. J. D. 44 (2007) 233.

    [62] K.P. Driver, B. Militzer, All-electron path integral monte carlo simulations of warm dense matter: application to water and carbon plasmas, Phys. Rev. Lett. 108 (2012) 115502.

    [63] D. Saumon, C. Starrett, J. Kress, J. Cl erouin, The quantum hypernetted chain model of warm dense matter, High. Energy Density Phys. 8 (2012) 150.

    [64] B. Albertazzi, B. B eard, A. Ciardi, T. Vinci, J. Albrecht, et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Rev. Sci. Instrum. 84 (2013) 043505.

    [65] M.Z. Mo, Z. Chen, S. Fourmaux, A. Saraf, K. Otani, et al., Laser wakefield generated x-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum, Rev. Sci. Instrum. 84 (2013) 123106.

    [66] R.F. Smith, J.H. Eggert, M.D. Saculla, A.F. Jankowski, M. Bastea, et al., Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth, Phys. Rev. Lett. 101 (2008) 065701.

    [67] D.G. Hicks, T.R. Boehly, P.M. Celliers, J.H. Eggert, S.J. Moon, et al., Laser-driven single shock compression of fluid deuterium from 45 to 220 gpa, Phys. Rev. B 79 (2009) 014112.

    [68] K. Falk, C.A. McCoy, C.L. Fryer, C.W. Greeff, A.L. Hungerford, et al., Temperature measurements of shocked silica aerogel foam, Phys. Rev. E 90 (2014) 033107.

    [69] K. Falk, E.J. Gamboa, G. Kagan, D.S. Montgomery, B. Srinivasan, et al., Equation of state measurements of warm dense carbon using laserdriven shock and release technique, Phys. Rev. Lett. 112 (2014) 155003.

    [70] S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, et al., Demonstration of spectrally resolved x-ray scattering in dense plasmas, Phys. Rev. Lett. 90 (2003) 175002.

    [71] P.M. Celliers, D.K. Bradley, G.W. Collins, D.G. Hicks, T.R. Boehly, et al., Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility, Rev. Sci. Instrum. 75 (2004) 4916.

    [72] M.C. Gregor, R. Boni, A. Sorce, J. Kendrick, C.A. McCoy, et al., Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials. Rev. Sci. Instrum. 87 (2016) 114903.

    [73] D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, Nanosecond formation of diamond and lonsdaleite by shock compression of graphite, Nature 10970 (2016).

    [74] P. McKenna, A.P.L. Robinson, D. Neely, M.P. Desjarlais, D.C. Carroll, et al., Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses, Phys. Rev. Lett. 106 (2011) 185004.

    [75] A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, et al., Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci. Rep. 5 (2015) 11089.

    [76] G. Gregori, S.H. Glenzer, W. Rozmus, R.W. Lee, O.L. Landen, Theoretical model of x-ray scattering as a dense matter probe, Phys. Rev. E 67 (2003) 026412.

    [77] S. Atzeni, J. Meyer-ter-Vehn, The Physic of Inertial Fusion, Clarendon Press, Oxford, United Kingdom, 2004.

    [78] O. Hurricane, D. Callahan, D. Casey, P. Celliers, C. Cerjan, et al., Fuel gain exceeding unityin an inertially confined fusion implosion, Nature 506 (2014) 343.

    [79] R. Betti, O. Hurricane, Inertial-confinement fusion with lasers, Nat. Phys. 12 (2016) 435.

    [80] R. Betti, C. Zhou, K. Anderson, L. Perkins, W. Theobald, et al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett. 98 (2007) 155001.

    [81] S. Atzeni, X. Ribeyre, G. Schurtz, A. Schmitt, B. Canaud, et al., Shock ignition of thermonuclear fuels: principles and modelling, Nucl. Fusion 54 (2014) 054008.

    [82] D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, et al., Physics issues for shock ignition, Nucl. Fusion 54 (2014) 054009.

    [83] D. Batani, L. Antonelli, G. Folpini, Y. Maheut, L. Giuffrida, et al., Generation of high pressure shocks relevant to the shock-ignition intensity regime, Phys. Plasmas 21 (2014) 032710.

    [84] V. Tikhonchuk, A. Colaitis, A. Vallet, E. Llor Aisa, G. Duchateau, et al., Physics of laser-plasma interaction for shock ignition of fusion reactions, Plasma Phys. control. Fusion 58 (2015) 014018.

    [85] G. von Guderley, Starke kugelige und zylindrische Verdichtungsst€osse in der N€ahe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrt- Forsch 9 (1942) 302.

    [86] K. Brueckner, S. Jorna, Laser-driven fusion, Rev. Mod. Phys. 46 (1974) 325.

    [87] V. Shcherbakov, Ignition of a laser-fusion target by a focusing shock wave, Sov. J. Plasma Phys. 9 (1983) 240.

    [88] X. Ribeyre, G. Schurtz, M. Lafon, S. Galera, S. Weber, Shock ignition: an alternative scheme for HiPER, Plasma Phys. control. Fusion 51 (2009) 015013.

    [89] X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loum e, J. Breil, et al., Shock ignition: modelling and target design robustness, Plasma Phys. control. Fusion 51 (2009) 124030.

    [90] O. Klimo, S. Weber, V. Tikhonchuk, J. Limpouch, Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario, Plasma. Phys. Control. Fusion 52 (2010) 055013.

    [91] O. Klimo, J. Psikal, V. Tikhonchuk, S. Weber, Two-dimensional simulations of laser-plasma interaction and hot electron generation in the context of shock-ignition research, Plasma. Phys. Control. Fusion 56 (2014) 055010.

    [92] C. Riconda, S. Weber, V. Tikhonchuk, A. Heron, Kinetic simulations of stimulated Raman backscattering and related processes for the shockignition approach to inertial confinement fusion, Phys. Plasmas 18 (2011) 092701.

    [93] S. Weber, C. Riconda, O. Klimo, A. Heron, V. Tikhonchuk, Fast saturation of the two-plasmon-decay instability for shock-ignition conditions, Phys. Rev. E 85 (2012) 016403.

    [94] M. Temporal, B. Canaud, W. Garbett, R. Ramis, S. Weber, Irradiation uniformity at the laser magajoule facility in the context of the shock ignition scheme, High. Power Laser Sci. Eng. 2 (2014) e8.

    [95] S. Weber, G. Riazuelo, P. Michel, R. Loubere, F. Walraet, et al., Modeling of laser-plasma interaction on hydrodynamic scales: physics development and comparison with experiments, Laser Part. Beams 22 (2004) 189.

    [96] S. Weber, P. Maire, R. Loubere, G. Riazuelo, P. Michel, et al., Modeling of laser-plasma interaction on hydrodynamic scales: physics development and comparison with experiments, Comp. Phys. Comm. 168 (2005) 141.

    [97] M. Holec, J. Limpouch, R. Liska, S. Weber, High-order discontinuous galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics, Int. J. Numer. Meth. Fluids 83 (2017) 779, http:// dx.doi.org/10.1002/fld.4288.

    [98] L.L. Ji, J. Snyder, A. Pukhov, R.R. Freeman, K.U. Aklib, Towards manipulating relativistic laser pulses with micro-tube plasma lenses, Sci. Rep. 6 (2016) 23256.

    [99] S. Monchoc e, S. Kahaly, A. Leblanc, L. Videau, P. Combis, et al., Optically controlled solid-density transient plasma gratings, Phys. Rev. Lett. 112 (2014) 145008.

    [100] G. Scott, V. Bagnoud, C. Brabetz, R. Clarke, J. Green, et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses, New J. Phys. 17 (2015) 033027.

    [101] M. Maier, W. Kaiser, J. Giordmaine, Intense light bursts in the stimulated Raman effect, Phys. Rev. Lett. 17 (1966) 1275.

    [102] R. Milroy, C. Capjack, C. James, A plasma-laser amplifier in the 11e16mm wavelength range, Plasma Phys. 19 (1977) 989.

    [103] R. Milroy, C. Capjack, C. James, Plasma laser pulse amplifier using induced raman or brillouin processes, Phys. Fluids 22 (1979) 1922.

    [104] C. Capjack, C. James, J. McMullin, Plasma krf laser pulse compressor, J. Appl. Phys. 53 (1982) 4046.

    [105] A. Andreev, A. Sutyagin, Feasibility of optical pulse compression by stimulated brillouin scattering in a plasma, Sov. J. Quantum Electron 19 (1989) 1579.

    [106] Z. Sheng, J. Zhang, D. Umstadter, Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications, Appl. Phys. 77 (2003) 673.

    [107] D. Forslund, J. Kindel, E. Lindman, Theory of stimulated scattering processes in laser-irradiated plasmas, Phys. Fluids 18 (1975) 1002.

    [108] D. Ristau (Ed.), Laser-induced Damage in Optical Materials, Taylor and Francis Inc, 2014.

    [109] A. Andreev, C. Riconda, V. Tikhonchuk, S. Weber, Short light pulse amplification and compression by stimulated brillouin scattering in plasmas in the strong coupling regime, Phys. Plasmas 13 (2006) 053110.

    [110] S. Weber, C. Riconda, L. Lancia, J.-R. Marqu es, G. Mourou, et al., Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas, Phys. Rev. Lett. 111 (2013) 055004.

    [111] A. Frank, J. Fuchs, L. Lehmann, J.-R. Marqu es, G. Mourou, et al., Amplification of ultra-short light pulses by ion collective modes in plasmas, Eur. Phys. J. Spec. Top. 223 (2014) 1153.

    [112] C. Riconda, S. Weber, L. Lancia, J.-R. Marqu es, G. Mourou, et al., Spectral characteristics of ultra-hort laser pulses in plasma amplifiers, Phys. Plasmas 20 (2013) 083115.

    [113] C. Riconda, S.Weber, L. Lancia, J.-R.Marqu es, G. Mourou, et al., Plasmabased creation of short light pulses: analysis and simulation of amplification and focusing, Plasma Phys. control. Fusion 57 (2015) 014002.

    [114] M. Chiaramello, C. Riconda, F. Amiranoff, J. Fuchs, M. Grech, et al., Optimization of interaction conditions for efficient short laser pulse amplification by stimulated brillouin scattering in the strongly coupled regime, Phys. Plasmas 23 (2016) 072103.

    [115] M. Chiaramello, F. Amiranoff, C. Riconda, S. Weber, Role of frequency chirp and energy flow directionality in the strong coupling regime of brillouin-based plasma amplification, Phys. Rev. Lett. 117 (2016) 235003.

    [116] G. Lehmann, F. Schluck, K. Spatschek, Regions for brillouin seed pulse growth in relativistic laser-plasma interaction, Phys. Plasmas 19 (2012) 093120.

    [117] G. Lehmann, K. Spatschek, Nonlinear brillouin amplification of finiteduration seeds in the strong coupling regime, Phys. Plasmas 20 (2016) 073112.

    [118] G. Lehmann, K. Spatschek, Temperature dependence of seed pulse amplitude and density grating in brillouin amplification, Phys. Plasmas 23 (2016) 023107.

    [119] F. Schluck, G. Lehmann, K. Spatschek, Amplification of a seed pumped by a chirped laser in the strong coupling brillouin regime, Phys. Plasmas 22 (2015) 093104.

    [120] F. Schluck, G. Lehmann, C. Mu¨llwer, K. Spatschek, Dynamical transition between weak and strong coupling in brillouin laser pulse amplification, Phys. Plasmas 23 (2016) 083105.

    [121] L. Lancia, J.-R. Marqu es, M. Nakatsutsumi, C. Riconda, S. Weber, et al., Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime, Phys. Rev. Lett. 104 (2010) 025001.

    [122] L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, et al., Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification, Phys. Rev. Lett. 116 (2016) 075001.

    [123] S. Bahk, P. Rousseau, T. Planchon, V. Chvykov, G. Kalintchenko, et al., Generation and characterization of the highest laser intensities e1022W=cm2T, Opt. Lett. 29 (2004) 2837.

    [124] A. Kon, M. Nakatsutsumi, S. Buffechoux, Z.L. Chen, J. Fuchs, et al., Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse, J. Phys. Conf. Ser. 244 (2010) 032008.

    [125] M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, et al., Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity, Opt. Lett. 35 (2010) 2314.

    [126] M. Nakatsutsumi, Y. Sentoku, S. N. Chen, S. Buffechoux, A. Kon, et al., On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons (Submitted for publication).

    [127] R. Wilson, M. King, R.J. Gray, D.C. Carroll, R.J. Dance, et al., Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities, Phys. Plasmas 23 (2016) 033106.

    [128] T.-M. Jeong, S. Weber, B. LeGarrec, D. Margarone, T. Mocek, et al., Spatio-temporal modification of femtosecond focal spot under tight focusing condition, Opt. Express 23 (2015) 11641.

    [129] I. Thiele, S. Skupin, R. Nuter, Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes, J. Comput. Phys. 321 (2016) 1110.

    [130] V. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Sov. Laser Res. 6 (1985) 497.

    [131] S. Bulanov, T. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, et al., On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam, Nucl. Instrum. Methods Phys. Research Sec. A: accelerators, Spectrometers, Detect. Assoc. Equip. 660 (2011) 31.

    [132] G. Lowenthal, P. Airey, Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers, and Students, Cambridge University Press, Cambridge ; New York, 2001.

    [133] T. Nakamura, J. Koga, T. Esirkepov, M. Kando, G. Korn, et al., Highpower g-ray flash generation in ultraintense laser-plasma interaction, Phys. Rev. Lett. 108 (2012) 195001.

    [134] D. Thompson, Highlights of GeV gamma-ray astronomy, Astrophys. Space Sci. Trans. 6 (2010) 59.

    [135] J. Wardle, D. Homan, R. Ojha, D. Roberts, Electron-positron jets associated with the quasar 3c279, Nature 395 (1998) 457.

    [136] F.A. Aharonian, A.G. Akhperjanian, K.-M. Aye, A.R. Bazer-Bachi, M. Beilicke, et al., High-energy particle acceleration in the shell of a supernova remnant, Nature 432 (2004) 75.

    [137] Y. Lau, F. He, D. Umstadter, R. Kowalczyk, Nonlinear Thomson scattering: a tutorial,, Phys. Plasmas 10 (2003) 2155.

    [138] R. Capdessus, E. d’Humi eres, V.T. Tikhonchuk, Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities, Phys. Rev. Lett. 110 (2013) 215003.

    [139] D.J. Stark, T. Toncian, A.V. Arefiev, Enhanced multi-mev photon emission by a laser-driven electron beam in a self-generated magnetic field, Phys. Rev. Lett. 116 (2016) 185003.

    [140] K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, et al., All-optical compton gamma-ray source, Nat. Phot. 6 (2012) 308.

    [141] L.M. Chen, W.C. Yan, D.Z. Li, Z.D. Hu, L. Zhang, et al., Bright betatron x-ray radiation from a laser-driven-clustering gas target, Sci. Rep. 3 (2013) 1912.

    [142] N.D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, et al., Quasi-monoenergetic and tunable x-rays from a laser-driven compton light source, Nat. Phot. 8 (2014) 28.

    [143] G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, et al., Ultrahigh brilliance multi-mev g-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014) 224801.

    [144] K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, et al., Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime, Phys. Rev. Lett. 114 (2015) 195003.

    [145] A.G.R. Thomas, C.P. Ridgers, S.S. Bulanov, B.J. Griffin, S.P.D. Mangles, Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam, Phys. Rev. X 2 (2012) 041004.

    [146] M. Vranic, J.L. Martins, J. Vieira, R.A. Fonseca, L.O. Silva, All-optical radiation reaction at 1021W=cm2, Phys. Rev. Lett. 113 (2014) 134801.

    [147] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664.

    [148] N. Neitz, A. Di Piazza, Stochasticity effects in quantum radiation reaction, Phys. Rev. Lett. 111 (2013) 054802.

    [149] T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Quantum radiation reaction in laser-electron-beam collisions, Phys. Rev. Lett. 112 (2014) 015001.

    [150] S.R. Yoffe, Y. Kravets, A. Noble, D.A. Jaroszynski, Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses, New J. Phys. 17 (2015) 053025.

    [151] M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18 (2016) 073035.

    [152] Y. Gu, O. Klimo, S. Weber, G. Korn, High density ultrashort relativistic positron beam generation by laser-plasma interaction, New J. Phys. 18 (2016) 113023.

    [153] S. Bulanov, C. Schroeder, E. Esarey, W. Leemans, Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses, Phys. Rev. A 87 (2013).

    [154] G. Breit, J.A. Wheeler, Collision of two light quanta, Phys. Rev. 46 (1934) 1087.

    [155] D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, et al., Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79 (1997) 1626.

    [156] A.R. Bell, J.G. Kirk, Possibility of prolific pair production with highpower lasers, Phys. Rev. Lett. 101 (2008) 200403.

    [157] S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, Electron-positron pair production by electromagnetic pulses, JETP 102 (2006) 9.

    [158] M. Jirka, O. Klimo, S.V. Bulanov, T.Zh. Esirkepov, E. Gelfer, et al., Electron dynamics and g and ete production by colliding laser pulses, Phys. Rev. E 93 (2016) 023207.

    [159] T. Grismayer, M. Vranic, J.L. Martins, R.A. Fonseca, L.O. Silva, Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses, Phys. Plasmas 23 (2016) 056706.

    [160] E.G. Gelfer, A.A. Mironov, A.M. Fedotov, V.F. Bashmakov, I.Y. Kostyukov, et al., Perspectives of implementing QED cascade production with the next generation of laser facilities, J. Phys. Conf. Ser. 594 (2015) 012054.

    [161] M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva, Electron-positron cascades in multiple-laser optical traps, Plasma Phys. control. Fusion 59 (2016) 014040.

    [162] E. Gelfer, H. Kadlecova, O. Klimo, S. Weber, G. Korn, Gravitational waves generated by laser accelerated relativistic ions, Phys. Plasmas 23 (2016) 093107.

    [163] A. Faenov, J. Colgan, S. Hansen, A. Zhidkov, T. Pikuz, et al., Nonlinear increase of x-ray intensities from thin foils irradiated with a 200 tw femtosecond laser, Sci. Rep. 5 (2015) 13436.

    [164] Y. Zou, R. Hutton, F. Currell, I. Martinson, S. Hagmann (Eds.), Handbook for Highly Charged Ion Spectroscopic Research, Taylor & Francis Inc, 20 September 2011. ISBN-10: 1420079042, ISBN-13: 978- 1420079043.

    [165] A. Faenov, I. Skobelev, T. Pikuz, S. Pikuz, R. Kodama, et al., Diagnostics of warm dense matter by high-resolution x-ray spectroscopy of hollow ions, Laser Part. Beams 33 (2015) 27.

    [166] J. Colgan, J. Abdallah, A. Faenov, S. Pikuz, E. Wagenaars, et al., Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime, Phys. Rev. Lett. 110 (2014) 125001.

    [167] F. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozieres, et al., Exotic x-ray emission from dense plasmas, J. Phys. B At. Mol. Opt. Phys. 48 (2015) 224005.

    [168] E. Galtier, A. Moinard, F. Khattak, O. Renner, T. Robert, et al., High resolution x-ray imaging of k-alpha radiation induced by high intensity laser pulse interaction with a copper target, J. Phys. B At. Mol. Opt. Phys. 45 (2012) 205701.

    [169] F. Condamine, R. Lotzsch, I. Uschmann, O. Renner, O. Klimo, et al., Ultra-fast dynamics of charge state distribution driven by suprathermal electrons generated from laser solid matter interaction at relativistic laser intensities, (to be submitted).

    [170] O. Renner, R. Liska, F. Rosmej, Laser-produced plasma-wall interaction, Laser Part. Beams 27 (2009) 725.

    [171] E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields, Springer Verlag, Berlin, 1995.

    [172] M. Tatarakis, I. Watts, F. Beg, E. Clark, A. Dangor, et al., Laser technology: measuring huge magnetic fields, Nature (London) 415 (2002) 280.

    [173] O. Renner, P. Sauvan, E. Dalimier, C. Riconda, F. Rosmej, et al., Signature of externally introduced laser fields in x-ray emission of multicharged ions, High. Energy Density Phys. 5 (2009) 139.

    [174] S. Ferri, A. Calisti, C. Mosse, L. Mouret, B. Talin, et al., Frequencyfluctuation model applied to stark-zeeman spectral line shapes in plasmas, Phys. Rev. E 84 (2011) 026407.

    [175] E. Stambulchik, Y. Maron, Zeeman effect induced by strong laser light, Phys. Rev. Lett. 113 (2014) 083002.

    [176] R. Loetzsch, O. J€ackel, S. H€ofer, T. K€ampfer, J. Polz, et al., K-shell spectroscopy of silicon ions as diagnostic for high electric fields, Rev. Sci. Instr. 83 (2012) 113507.

    [177] G. Fiksel, W. Fox, A. Bhattacharjee, D.H. Barnak, P.-Y. Chang, et al., Magnetic reconnection between colliding magnetized laser-produced plasma plumes, Phys. Rev. Lett. 113 (2014) 105003.

    [178] B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Beard, et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science 346 (2014) 325.

    [179] O.V. Gotchev, J.P. Knauer, P.Y. Chang, N.W. Jang, M.J. Shoup III, et al., Seeding magnetic fields for laser-driven flux compression in highenergy- density plasmas, Rev. Sci. Instrum. 80 (2009) 043504.

    [180] P.Y. Chang, G. Fiksel, M. Hohenberger, J.P. Knauer, R. Betti, et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys. Rev. Lett. 107 (2011) 035006.

    [181] K.B. Fournier, J.D. Moody, Report on the B-fields at NIF workshop held at LLNL October 12e13, 2015, Tech. Rep. Lawrence Livermore Natl. Lab., 2016. URL:https://lasers.llnl.gov/content/assets/docs/for-users/ report_on_the_b-field_workshop.pdf.

    [182] G. Fiksel, A. Agliata, D. Barnak, G. Brent, P.-Y. Chang, et al., Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility, Rev. Sci. Instrum. 86 (2015) 016105.

    [183] B.B. Pollock, D.H. Froula, P.F. Davis, J.S. Ross, S. Fulkerson, et al., High magnetic field generation for laser-plasma experiments, Rev. Sci. Instrum. 77 (2006) 114703.

    [184] S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, et al., Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets, Phys. Plasmas 7 (2000) 2076.

    [185] P.A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, et al., Observation of a highly directional g-ray beam from ultrashort, ultraintense laser pulse interactions with solids, Phys. Plasmas 6 (1999) 2150.

    [186] C.D. Chen, J.A. King, M.H. Key, K.U. Akli, F.N. Beg, et al., A bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters,, Rev. Sci. Instrum. 79 (2008) 10E305.

    [187] J.H. Jeon, K. Nakajima, H.T. Kim, Y.J. Rhee, V.B. Pathak, et al., A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation, Rev. Sci. Instrum. 86 (2015) 123116.

    [188] S. Sakata, Y. Arikawa, S. Kojima, T. Ikenouchi, T. Nagai, et al., Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV, Rev. Sci. Instrum. 85 (2014) 11D629.

    [189] M.A. Espy, A. Gehring, A. Belian, T. Haines, J. Hunter, et al., A wideacceptance compton spectrometer for spectral characterization of a medical x-ray source, Proc. SPIE 9783 (2016) 97834V.

    [190] S. Singh, A. L. Garcia, A. Ferrari, M. Molodtsova, L. Morejon, et al., Absolute calibration of a compact gamma-ray spectrometer for high intensity laser plasma experiments (In preparation).

    [191] S. Kneip, C. McGuffey, J. Martins, C. Bellei, V. Chvykov, et al., Bright spatially coherent synchrotron X-rays from a table-top source, Nat. Phys. 6 (2010) 980.

    [192] Z. Najmudin, S. Kneip, M.S. Bloom, S.P.D. Mangles, O. Chekhlov, et al., Compact laser accelerators for x-ray phase-contrast imaging, Philo. Trans. Royal Soc. London a: Mathematical, Physical and Engineering Sciences 372 (2014).

    [193] F. Dorchies, V. Recoules, J. Bouchet, C. Fourment, P.M. Leguay, et al., Time evolution of electron structure in femtosecond heated warm dense molybdenum, Phys. Rev. B 92 (2015) 144201.

    [194] A. Poy e, S. Hulin, M. Bailly-Grandvaux, J. Dubois, J. Ribolzi, et al., Physics of giant electromagnetic pulse generation in short-pulse laser experiments, Phys. Rev. E 91 (2015) 043106.

    [195] A. Poy e, J. Dubois, F. Lubrano-Lavaderci, E. D'Humi eres, M. Bardon, et al., Dynamic model of target charging by short laser pulse interactions, Phys. Rev. E 92 (2015) 043107.

    [196] J. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave, . Tikhonchuk, et al., Target charging in short-pulse-laser-plasma experiments, Phys. Rev. E 89 (2014) 013102.

    [197] C. Stoeckl, V. Glebov, P. Jaanimagi, J. Knauer, D. Meyerhofer, et al., Operation of target diagnostics in a petawatt laser environment (invited), Rev. Sci. Instrum. 77 (2006) 10F506.

    [198] M. DeMarco, J. Krasa, J. Cikhardt, M. Pfeifer, E. Krousky, et al., Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets, J. Inst. 11 (2016) C06004.

    [199] M. Mead, D. Neely, J. Gauoin, R. Heathcote, P. Patel, Electromagnetic pulse generation within a petawatt laser target chamber, Rev. Sci. Instrum. 75 (2004) 4225.

    [200] Virtual Lab from Lighttrans: http://www.lighttrans.com.

    S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bucka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.-R. Garcia, J. Grosz, Y.-J. Gu, J.-C. Hernandez, M. Holec, P. Janecka, M. Jantac, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovicka, P. Lutoslawski, L. Morejon, V. Olsovcova, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Smid, M. Sokol, R. Versaci, R. Vrana, M. Vranic, J. Vyskocil, A. Wolf, Q. Yu. P3: An installation for high-energy density plasma physics and ultra-high intensity laserematter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149
    Download Citation