• Acta Optica Sinica
  • Vol. 41, Issue 14, 1422001 (2021)
Jiahui Li1、2、3, Fenli Tan1、2、3, Chenxin Zeng1、2、3, and Yiqun Ji1、2、3、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Laboratory of Advanced Optical Manufacture Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China
  • 3Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu 215006, China
  • show less
    DOI: 10.3788/AOS202141.1422001 Cite this Article Set citation alerts
    Jiahui Li, Fenli Tan, Chenxin Zeng, Yiqun Ji. Design of Optical System for UAV-Borne Ultralow-Altitude Wide-Coverage Remote Sensing Camera[J]. Acta Optica Sinica, 2021, 41(14): 1422001 Copy Citation Text show less
    Optical imaging diagram of monocentric symmetric objective
    Fig. 1. Optical imaging diagram of monocentric symmetric objective
    Optical layout of monocentric symmetric objective
    Fig. 2. Optical layout of monocentric symmetric objective
    Imaging performance of monocentric symmetric objective at the optimal image surface when the flight altitude is 50 m. (a) Spot diagram; (b) ray fan
    Fig. 3. Imaging performance of monocentric symmetric objective at the optimal image surface when the flight altitude is 50 m. (a) Spot diagram; (b) ray fan
    Optical layout of relay lens system
    Fig. 4. Optical layout of relay lens system
    Single-channel imaging optical layout
    Fig. 5. Single-channel imaging optical layout
    MTF of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Fig. 6. MTF of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Spot diagram of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Fig. 7. Spot diagram of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Field curvature/distortion curve of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Fig. 8. Field curvature/distortion curve of single-channel imaging optical system at different flight altitudes. (a) 20 m; (b) 50 m; (c) 80 m
    Multi-channel imaging optical layout
    Fig. 9. Multi-channel imaging optical layout
    Parameterckα1α2α3α4α8
    Value-0.01-8.043×10-501.403×10-10000
    Table 1. Parameters in the intermediate image surface equation when the flight altitude is 50 m
    Altitude /mAxial displacement relativeto the optimal intermediateimage surface of 50 m /μmGEO radius of spot diagram /μmRMSE(relative to 50 m)
    35°49°66°
    20+0.3010.3250.3170.3320.3140.0096
    30+0.1330.3060.3020.3220.3130.0047
    40+0.0500.3220.3150.3330.3220.0086
    60-0.0330.3360.3270.3430.3300.0188
    70-0.0570.3310.3230.3400.3290.0154
    80-0.0750.3280.3200.3380.3270.0132
    Table 2. Axial displacement of the optimal intermediate image surface at different flight altitudes relative to 50 m and evaluation results of the spot diagram
    Serial No.Radius /mmConicSemi-diameter /mm
    3-32.1262921.535.4
    Table 3. Aspheric surface parameters
    Jiahui Li, Fenli Tan, Chenxin Zeng, Yiqun Ji. Design of Optical System for UAV-Borne Ultralow-Altitude Wide-Coverage Remote Sensing Camera[J]. Acta Optica Sinica, 2021, 41(14): 1422001
    Download Citation