• Photonics Research
  • Vol. 9, Issue 6, 1099 (2021)
Weibao He1、†, Mingyu Tong1、†, Zhongjie Xu1、†, Yuze Hu1, Xiang’ai Cheng1, and Tian Jiang1、2、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
  • show less
    DOI: 10.1364/PRJ.423119 Cite this Article Set citation alerts
    Weibao He, Mingyu Tong, Zhongjie Xu, Yuze Hu, Xiang’ai Cheng, Tian Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface[J]. Photonics Research, 2021, 9(6): 1099 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass. Wireless sub-THz communication system with high data rate. Nat. Photonics, 7, 977-981(2013).

    [3] X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, S. Zhuang. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv. Opt. Mater., 8, 1901342(2020).

    [4] S. Zhong. Progress in terahertz nondestructive testing: a review. Front. Mech. Eng., 14, 273-281(2019).

    [5] Y. Kawano. Terahertz sensing and imaging based on nanostructured semiconductors and carbon materials. Laser Photon. Rev., 6, 246-257(2012).

    [6] P. U. Jepsen, D. G. Cooke, M. Koch. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photon. Rev., 5, 124-166(2011).

    [7] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater., 7, 1970084(2019).

    [8] T. Nagatsuma, G. Ducournau, C. C. Renaud. Advances in terahertz communications accelerated by photonics. Nat. Photonics, 10, 371-379(2016).

    [9] X. C. Q. Yang, Q. Xu, C. Tian, Y. Xu, L. Cong, X. Zhang, Y. Li, C. Zhang, X. Zhang, J. Han, W. Zhang. Broadband terahertz rotator with an all-dielectric metasurface. Photon. Res., 6, 1056-1061(2018).

    [10] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, J. B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 9, 4909(2018).

    [11] L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, R. Singh. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light Sci. Appl., 7, 28(2018).

    [12] C. C. Chang, Z. Zhao, D. Li, A. J. Taylor, S. Fan, H. T. Chen. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys. Rev. Lett., 123, 237401(2019).

    [13] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [14] Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, L. Zhou. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 041027(2015).

    [15] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics, 2, 295-298(2008).

    [16] S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger-Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl’Innocenti. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning. Adv. Opt. Mater., 6, 1800570(2018).

    [17] S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, C. Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271-278(2018).

    [18] S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).

    [19] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [20] M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, W. Zhang. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Opt. Express, 25, 19844-19855(2017).

    [21] X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, J. Han, W. Zhang. Active control of polarization-dependent near-field coupling in hybrid metasurfaces. Appl. Phys. Lett., 113, 061111(2018).

    [22] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [23] T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, S. Zhang. Electrically tunable slow light using graphene metamaterials. ACS Photon., 5, 1800-1807(2018).

    [24] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 68, 104280(2020).

    [25] Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, R. Singh. MoS2 for ultrafast all-optical switching and modulation of THz Fano metaphotonic devices. Adv. Opt. Mater., 5, 1700762(2017).

    [26] A. Kumar, A. Solanki, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, R. Singh. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv., 6, eaax8821(2020).

    [27] M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater., 29, 1605881(2017).

    [28] Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng, T. Jiang. Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [29] W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, R. Singh. Ultrafast all-optical switching of germanium-based flexible metaphotonic devices. Adv. Mater., 30, 1705331(2018).

    [30] H. J. Joyce, J. L. Boland, C. L. Davies, S. A. Baig, M. B. Johnston. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol., 31, 103003(2016).

    [31] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [32] M. Minkov, I. A. D. Williamson, L. C. Andreani, D. Gerace, B. Lou, A. Y. Song, T. W. Hughes, S. Fan. inverse design of photonic crystals through automatic differentiation. ACS Photon., 7, 1729-1741(2020).

    [33] D. Sell, J. Yang, S. Doshay, R. Yang, J. A. Fan. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett., 17, 3752-3757(2017).

    [34] C. Sitawarin, W. Jin, Z. Lin, A. W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [invited]. Photon. Res., 6, B82-B89(2018).

    [35] W. Ma, F. Cheng, Y. Xu, Q. Wen, Y. Liu. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [36] Y. Chen, Y. Hu, J. Zhao, Y. Deng, Z. Wang, X. Cheng, D. Lei, Y. Deng, H. Duan. Topology optimization-based inverse design of plasmonic nanodimer with maximum near-field enhancement. Adv. Funct. Mater., 30, 2000642(2020).

    [37] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [38] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, J. Vučković. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2018).

    [39] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [40] S. Y. Y. Zhang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [41] B. Shen, P. Wang, R. Polson, R. Menon. Ultra-high-efficiency metamaterial polarizer. Optica, 1, 356-360(2014).

    [42] S. So, T. Badloe, J. Noh, J. Rho, J. Bravo-Abad. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [43] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [44] L. Su, D. Vercruysse, J. Skarda, N. V. Sapra, J. A. Petykiewicz, J. Vučković. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020).

    [45] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [46] M. D. Huntington, L. J. Lauhon, T. W. Odom. Subwavelength lattice optics by evolutionary design. Nano Lett., 14, 7195-7200(2014).

    [47] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, A. W. Rodriguez. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).

    [48] J. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J. K. Poon. Binary particle swarm optimized 2 x 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868-3871(2016).

    [49] T. Nakanishi, Y. Nakata, Y. Urade, K. Okimura. Broadband operation of active terahertz quarter-wave plate achieved with vanadium-dioxide-based metasurface switchable by current injection. Appl. Phys. Lett., 117, 091102(2020).

    [50] D. Wang, L. Zhang, Y. Gong, L. Jian, T. Venkatesan, C. Qiu, M. Hong. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photon. J., 8, 5500308(2016).

    [51] D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, M. Hong. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep., 5, 15020(2015).

    [52] M. Manjappa, A. Solanki, A. Kumar, T. C. Sum, R. Singh. Solution-processed lead iodide for ultrafast all-optical switching of terahertz photonic devices. Adv. Mater., 31, 1901455(2019).

    [53] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [54] P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett., 109, 187401(2012).

    [55] R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS’95), 39-43(1995).

    [56] D.-C. Wang, R. Tang, Z. Feng, S. Sun, S. Xiao, W. Tan. Symmetry-assisted spectral line shapes manipulation in dielectric double-Fano metasurfaces. Adv. Opt. Mater., 9, 2001874(2021).

    [57] D.-C. Wang, S. Sun, Z. Feng, W. Tan, C.-W. Qiu. Multipolar-interference-assisted terahertz waveplates via all-dielectric metamaterials. Appl. Phys. Lett., 113, 201103(2018).

    [58] T. W. Hughes, M. Minkov, I. A. D. Williamson, S. Fan. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon., 5, 4781-4787(2018).

    [59] Z. Tao, J. You, J. Zhang, X. Zheng, H. Liu, T. Jiang. Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network. Opt. Lett., 45, 1403-1406(2020).

    [60] Z. Tao, J. Zhang, J. You, H. Hao, H. Ouyang, Q. Yan, S. Du, Z. Zhao, Q. Yang, X. Zheng, T. Jiang. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics, 9, 2945-2956(2020).

    [61] S. Du, J. You, J. Zhang, Z. Tao, H. Hao, Y. Tang, X. Zheng, T. Jiang. Expedited circular dichroism prediction and engineering in two-dimensional diffractive chiral metamaterials leveraging a powerful model-agnostic data enhancement algorithm. Nanophotonics, 10, 20200570(2020).

    [62] M. ElKabbash, A. R. Rashed, B. Kucukoz, Q. Nguyen, A. Karatay, G. Yaglioglu, E. Ozbay, H. Caglayan, G. Strangi. Ultrafast transient optical loss dynamics in exciton–plasmon nano-assemblies. Nanoscale, 9, 6558-6566(2017).

    CLP Journals

    [1] Xin Yan, Tengteng Li, Guohong Ma, Ju Gao, Tongling Wang, Haiyun Yao, Maosheng Yang, Lanju Liang, Jing Li, Jie Li, Dequan Wei, Meng Wang, Yunxia Ye, Xiaoxian Song, Haiting Zhang, Chao Ma, Yunpeng Ren, Xudong Ren, Jianquan Yao. Ultra-sensitive Dirac-point-based biosensing on terahertz metasurfaces comprising patterned graphene and perovskites[J]. Photonics Research, 2022, 10(2): 280

    [2] Siyang Hu, Cheng Xiang’ai, Weibao He, Yuze Hu, Mingyu Tong, Zhongjie Xu. Inversely-designed terahertz metadevice with ultrafast modulation of double electromagnetically induced transparency windows[J]. Chinese Optics Letters, 2022, 20(11): 113701

    [3] Jia-Lu Zhu, Ren-Chao Jin, Li-Li Tang, Zheng-Gao Dong, Jia-Qi Li, Jin Wang. Multidimensional trapping by dual-focusing cylindrical vector beams with all-silicon metalens[J]. Photonics Research, 2022, 10(5): 1162

    Weibao He, Mingyu Tong, Zhongjie Xu, Yuze Hu, Xiang’ai Cheng, Tian Jiang. Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface[J]. Photonics Research, 2021, 9(6): 1099
    Download Citation