• Opto-Electronic Engineering
  • Vol. 46, Issue 7, 190167 (2019)
Liu Bo*, Yu Yang, and Jiang Shuo
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.190167 Cite this Article
    Liu Bo, Yu Yang, Jiang Shuo. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167 Copy Citation Text show less
    References

    [1] McManamon P F. Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology[J]. Optical Engi-neering, 2012, 51(6): 060901.

    [2] Stone W C, Juberts M, Dagalakis N G, et al. Performance analysis of next-generation LADAR for manufacturing, con-struction, and mobility[R]. NISTIR 7117, 2004.

    [3] Richmond D R, Stephen C C. Direct-Detection LADAR Sys-tems[M]. USA: SPIE Press, 2010.

    [4] Gatt P, Johnson S, Nichols T. Geiger-mode avalanche photo-diode ladar receiver performance characteristics and detection statistics[J]. Applied Optics, 2009, 48(17): 3261–3276.

    [5] Whyte R, Streeter L, Cree M J, et al. Application of lidar tech-niques to time-of-flight range imaging[J]. Applied Optics, 2015, 54(33): 9654–9664.

    [6] Jang J, Hwang S, Park K. Unambiguous range extension of a phase-shift based lidar by using two laser diodes with different modulation frequencies[C]//Proceedings of SPIE - International Conference on Optics in Precision Engineering and Nano-technology, Singapore, 2013.

    [7] Fan Y Y. Study of phase distance measurement based on dual-frequency modulated signals[D]. Taiyuan: North University of China, 2014.

    [8] Pierrottet D F, Amzajerdian F, Petway L B, et al. Linear FMCW laser radar for precision range and vector velocity measure-ments[J]. MRS Proceedings, 2008, 1076: 1076-K04-06.

    [9] Gao S, Hui R. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection[J]. Op-tics Letters, 2012, 37(11): 2022–2024.

    [10] Nobili S, Dominguez S, Garcia G, et al. 16 channels Velodyne versus planar LiDARs based perception system for Large Scale 2D-SLAM[C]//7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, Hamburg, Germany, 2015: 131–136.

    [11] Degnan J J. A conceptual design for a spaceborne 3D imaging lidar[J]. e&i Elektrotechnik und Informationstechnik, 2002, 119(4): 99–106.

    [12] Marino R M, Stephens T, Hatch R E, et al. A compact 3D im-aging laser radar system using Geiger-mode APD arrays: sys-tem and measurements[C]//Laser Radar Technology and Ap-plications VIII, Orlando, Florida, United States, 2003, 5086: 1–16.

    [13] Hegna T, Pettersson H, Grujic K. Inexpensive 3-D laser scan-ner system based on a galvanometer scan head[C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, UK, 2010.

    [14] Wang J Y, HongG L, Bu H Y, et al. Study on airborne scanning ladar[J]. Acta Optica Sinica, 2009, 29(9): 2584–2589.

    [15] Ji R W, Zhao C M, Chen G. Analysis and calculation of scan trace of laser scanning rotation mirror[J]. Chinese Journal of Lasers, 2011, 38(4): 1–5.

    [16] Do Carmo J P. Imaging LIDAR technology developments at the European Space Agency[C]//International Conference on Ap-plications of Optics and Photonics, Braga, Portugal, 2011, 8001: 800129.

    [17] Roth M W, Hunnell J C, Murphy K E, et al. High-resolution foliage penetration with gimbaled lidar[C]//Laser Radar Tech-nology and Applications XII, Orlando, Florida, United States, 2007, 6550: 65500K.

    [18] Riegl. Industrial 2D laser Scanner LMS-Q120ii[Z]. Riegl, 2009.

    [19] He J. Theory of high speed of scanning system of bistatic lidar and design[D]. Xi’an: Xidian University, 2009.

    [20] Kim J D, Jung J K, Jeon B C, et al. Wide band laser heat treatment using pyramid polygon mirror[J]. Optics and Lasers in Engineering, 2001, 35(5): 285–297.

    [21] Stevenson G, Verdun H R, Stern P H, et al. Testing the helicopter obstacle avoidance system[C]//SPIE's 1995 Sympo-sium on OE/Aerospace Sensing and Dual Use Photonics. In-ternational Society for Optics and Photonics, Orlando, FL, United States, 1995: 93–103.

    [22] Hofmann U, Senger F, Soerensen F, et al. Biaxial resonant 7mm-MEMS mirror for automotive LIDAR application[C]//2012 International Conference on Optical MEMS & Nanophotonics, Banff, AB, Canada, 2012: 150–151.

    [23] Niclass C, Ito K, Soga M, et al. Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor[J]. Optics Express, 2012, 20(11): 11863–11881.

    [24] Lee X, Wang C H. Optical design for uniform scanning in MEMS-based 3D imaging lidar[J]. Applied Optics, 2015, 54(9): 2219–2223.

    [25] Yu J Y. The main technical branches and development trend of vehicle LiDAR[J]. E-science Technology & Application, 2018, 9(6): 18–24.

    [26] Yan YW,An J M,Zhang J S, et al. Research progress of optical phased array technology[J]. Laser & Optoelectronics Progress, 2018, 55: 020006.

    [27] Nimelman M, Tripp J, Bailak G, et al. Spaceborne scanning lidar system (SSLS)[C]//Spaceborne Sensors II, Defense & Security, Orlando, Florida, United States, 2005, 5798: 73–82.

    [28] Luo Y, He Y, Gao M, et al. A lidar system for acquisition, point-ing, and tracking used in space rendezvous and docking with cooperative target[C]//Shanghai International Symposium on Remote Sensing and Social Development, Shanghai, 2013: 150–163.

    [29] Pfennigbauer M, M.bius B, do Carmo J P. Echo digitizing imaging lidar for rendezvous and docking[C]//Laser Radar Technology and Applications XIV, SPIE Defense, Security, and Sensing, Orlando, Florida, United States, 2009, 7323: 732302-1–732302-9.

    [30] Abshire J B, Sun X L, Riris H, et al. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance[J]. Geophysical Research Letters, 2005, 32(21): L21S02.

    [31] Sun X L, Abshire J B, McGarry J F, et al. Space lidar developed at the NASA goddard space flight center—The first 20 years[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1660–1675.

    [32] Abshire J B. NASA’s space lidar measurements of the earth and planets[C]//IEEE Photonics Society Meeting University of Maryland, Maryland, 2011.

    [33] Seidleck M. The ice, cloud, and land elevation satellite-2 — Overview, science, and applications[C]//IEEE Aerospace Con-ference, Big Sky, MT, USA, 2018: 1–8.

    [34] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environ-ment, 2017, 190: 260–273.

    [35] Yu A W, Krainak M A, Harding D J, et al. Development effort of the airborne lidar simulator for the lidar surface topography (LIST) mission[C]//Lidar Technologies, Techniques, and Mea-surements for Atmospheric Remote Sensing VII, Prague, Czech Republic, 2011, 8182: 818207.

    [36] Degnan J, McGarry J, Zagwodzki T, et al. Design and perfor-mance of an airborne multikilohertz, photon-counting, micro-laser altimeter[C]//Proceedings of the ISPRS Workshop on Land Surface Mapping and Characterization Using Laser Alti-metry, Annapolis, MD, 2001.

    [37] Degnan J, Wells D, Machan R, et al. Second generation air-borne 3D imaging lidars based on photon count-ing[C]//Advanced Photon Counting Techniques II, Boston, MA, United States, 2007, 6771: 6771ON.

    [38] Gluckman J. Design of the processing chain for a high-altitude, airborne, single-photon lidar mapping instrument[C]//Laser Radar Technology & Applications XXI, Baltimore, Maryland, United States, 2016, 9832: 983203.

    [39] Albota M A, Aull B F, Fouche D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays[J]. Lincoln Laboratory Journal, 2002, 13(2): 351–370.

    [40] Schultz K I, Kelly M W, Baker J J, et al. Digital-pixel focal plane array technology[J]. Lincoln Laboratory Journal, 2014, 20(2): 36–51.

    [41] Marino R M, Davis W R Jr. Jigsaw: A foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory Journal, 2005, 15(1): 23–36.

    [42] Vaidyanathan M, Blask S, Higgins T, et al. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with pho-ton-counting sensitivity for foliage penetration[C]//Laser Radar Technology and Applications XII, Orlando, Florida, United States, 2007, 6550: 6550ON.

    [43] Busck J, Heiselberg H. Gated viewing and high-accuracy three-dimensional laser radar[J]. Applied Optics, 2004, 43(24): 4705–4710.

    [44] Busck J. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, 2005, 44(11): 116001.

    [45] Laurenzis M, Christnacher F, Monnin D. Long-range three-dimensional active imaging with superresolution depth mapping[J]. Optics Letters, 2007, 32(21): 3146–3148.

    [46] Zhang X D, Yan H M, Jiang Y B. Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy[J]. Optics Letters, 2008, 33(11): 1219–1221.

    [47] Zhang X D, Yan H M, Zhou Q. Overcoming the shot-noise limitation of three-dimensional active imaging[J]. Optics Letters, 2011, 36(8): 1434–1436.

    [48] Zhang X D, Yan H M. Three-dimensional active imaging with maximum depth range[J]. Applied Optics, 2011, 50(12): 1682–1686.

    [49] Jin C F, Sun X D, Zhao Y, et al. Gain-modulated three-dimensional active imaging with depth-independent depth accuracy[J]. Optics Letters, 2009, 34(22): 3550–3552.

    [50] Jin C F, Zhao Y, Sun X D, et al. Scannerless gain-modulated three-dimensional laser imaging radar[C]//Lidar Remote Sens-ing for Environmental Monitoring XII, San Diego, California, United States, 2011, 8159: 1–15.

    [51] Chen Z, Liu B, Wang S J, et al. Polarization-modulated three-dimensional imaging using a large-aperture electro-optic modulator[J]. Applied Optics, 2018, 57(27): 7750–7757.

    [52] Chen Z, Liu B, Wang S J, et al. Efficient subpixel registration for polarization-modulated 3D imaging[J]. Optics Express, 2018, 26(18): 23040–23050.

    CLP Journals

    [1] Huang Siyuan, Liu Limin, Dong Jian, Fu Xiongjun. Review of ground filtering algorithms for vehicle LiDAR scans point cloud data[J]. Opto-Electronic Engineering, 2020, 47(12): 190688

    [2] LUO Jiacheng, LIU Bo, HUA Kangjian. Research on Range Walk Error and Timing Jitter of Photon Counting Lidar[J]. Semiconductor Optoelectronics, 2020, 41(5): 695

    [3] Liu Bo, Jiang Shuo, Yu Yang4, Chen Zhen. Macro/sub-pulse coded photon counting LiDAR[J]. Opto-Electronic Engineering, 2020, 47(10): 200265

    Liu Bo, Yu Yang, Jiang Shuo. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electronic Engineering, 2019, 46(7): 190167
    Download Citation