• Journal of Innovative Optical Health Sciences
  • Vol. 18, Issue 1, 2550007 (2025)
Zezheng Qin1,3,§, Lingyu Ma1,3,§, Zhigang Lei1,3,4, Yiming Ma1,2,3..., Weiwei Fu5,6,* and Mingjian Sun1,2,3,**|Show fewer author(s)
Author Affiliations
  • 1School of Astronautics, Harbin Institute of Technology, Harbin 150000, P. R. China
  • 2School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264200, P. R. China
  • 3Harbin Institute of Technology Suzhou Research Institute, Suzhou 215000, P. R. China
  • 4WEGO Holding Co., Ltd., Weihai 264209, P. R. China
  • 5School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine University of Science and Technology of China, Hefei, Anhui, P. R. China
  • 6Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, Jiangsu, P. R. China
  • show less
    DOI: 10.1142/S1793545825500075 Cite this Article
    Zezheng Qin, Lingyu Ma, Zhigang Lei, Yiming Ma, Weiwei Fu, Mingjian Sun. Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2550007 Copy Citation Text show less
    References

    [1] L. V. Wang, J. Yao. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods, 13, 627-638(2016).

    [2] Y. Zhou, J. Yao, L. V. Wang. Tutorial on photoacoustic tomography. J. Biomed. Opt., 21, 061007-061007(2016).

    [3] L. V. Wang, S. Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [4] Y. Liu et al. Photoacoustic elastography based on laser-excited shear wave. J. Innov. Opt. Health Sci., 17, 2350031(2024).

    [5] T. Chen et al. Dedicated photoacoustic imaging instrument for human periphery blood vessels: A new paradigm for understanding the vascular health. IEEE Transa. Biomed. Eng., 69, 1093-1100(2021).

    [6] I. Stoffels et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med., 7, 317ra199-317ra199(2015).

    [7] G. Diot et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res., 23, 6912-6922(2017).

    [8] L. Lin et al. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun., 9, 2352(2018).

    [9] Z. Qin et al. The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography. J. Innov. Opt. Health Sci., 15, 2250030(2022).

    [10] H. Lan et al. Photoacoustic classification of tumor model morphology based on support vector machine: A simulation and phantom study. IEEE J. Sel. Top. Quantum Electron., 25, 1-9(2018).

    [11] F. Ye, S. Yang, D. Xing. Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection. Appl. Phys. Lett., 97(2010).

    [12] Z. Qin et al. Convolutional sparse coding for compressed sensing photoacoustic CT reconstruction with partially known support. Biomed. Opt. Express, 15, 524-539(2024).

    [13] J. Yao et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407-410(2015).

    [14] J. H. Liu et al. Design, fabrication and testing of a dual-band photoacoustic transducer. Ultrason. Imaging, 30, 217-227(2008).

    [15] H. Wang et al. A multi-frequency PMUT array based on ceramic PZT for endoscopic photoacoustic imaging. Int. Conf. Solid-State Sensors, Actuators and Microsystems (Transducers), 30-33(2021).

    [16] A. Chekkoury et al. Optical mesoscopy without the scatter: Broadband multispectral optoacoustic mesoscopy. Biomed. Opt. Express, 6, 3134-3148(2015).

    [17] M. A. Kalkhoran, F. Varray, D. Vray. Dual frequency band annular probe for volumetric pulse-echo optoacoustic imaging. Phys. Procedia, 70, 1104-1108(2015).

    [18] J. Gateau, A. Chekkoury, V. Ntziachristos. Ultra-wideband three-dimensional optoacoustic tomography. Opt. Lett., 38, 4671-4674(2013).

    [19] M. Xu, L. V. Wang. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E, 67, 056605(2003).

    [20] R. K. W. Chee et al. Multifrequency interlaced CMUTs for photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 391-401(2016).

    [21] G. Ku et al. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol., 49, 1329(2004).

    [22] A. Chekkoury, J. Gateau, V. Ntziachristos. Multiple bandwidth volumetric optoacoustic tomography using conventional ultrasound linear arrays. European Conf. Biomedical Optics. Optica Publishing Group, 880003(2013).

    [23] Y. Cai et al. Broadband stack-layer 3 MHz–11 MHz dual-frequency ultrasound transducers for photoacoustic imaging. IEEE Int. Ultrasonics Symp., IUS, 1-3(2022).

    [24] G. Wang et al. Image reconstruction is a new frontier of machine learning. IEEE Trans. Med. Imaging, 37, 1289-1296(2018).

    [25] H. M. Zhang, B. Dong. A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China, 8, 311-340(2020).

    [26] K. H. Jin et al. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process., 26, 4509-4522(2017).

    [27] D. Seong et al. Three-dimensional reconstructing undersampled photoacoustic microscopy images using deep learning. Photoacoustics, 29, 100429(2023).

    [28] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).

    [29] S. Zheng et al. Deep learning framework for three-dimensional surface reconstruction of object of interest in photoacoustic tomography. Opt. Express, 32, 6037-6061(2024).

    [30] K. T. Hsu, S. Guan, P. V. Chitnis. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. Photoacoustics, 29, 100452(2023).

    [31] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).

    [32] S. Guan et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep., 10, 8510(2020).

    [33] S. Gutta et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 116001-116001(2017).

    [34] O. Ronneberger et al. U-Net: Convolutional networks for biomedical image segmentation. Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 24-241(2015).

    [35] M. Lingyu et al. Triple-path feature transform network for ring-array photoacoustic tomography image reconstruction. J. Innov. Opt. Health Sci., 17, 2350038(2024).

    [36] T. Tong et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics, 19, 100190(2020).

    [37] N. Ge, W. Guo, Y. Wang. Globally consistent image inpainting based on WGAN-GP network optimization. IEEE Int. Conf. Signal Processing, ICSP, 1, 70-75(2022).

    [38] I. Gulrajani et al. Improved training of Wasserstein GANs. Adv. Neural Inf. Process. Syst., 30(2017).

    Zezheng Qin, Lingyu Ma, Zhigang Lei, Yiming Ma, Weiwei Fu, Mingjian Sun. Multi-bandwidth reconstruction for photoacoustic tomography using cascade U-net[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2550007
    Download Citation