• High Power Laser Science and Engineering
  • Vol. 9, Issue 2, 02000e33 (2021)
Jinfang Yang1、2, Zhaohua Wang2、3、*, Jiajun Song2、4, Renchong Lv1、2, Xianzhi Wang2、4, Jiangfeng Zhu1, and Zhiyi Wei2、4、5
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an710071, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
  • 3CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China
  • 4University of Chinese Academy of Sciences, Beijing100049, China
  • 5Songshan Lake Materials Laboratory, Dongguan523808, China
  • show less
    DOI: 10.1017/hpl.2021.19 Cite this Article Set citation alerts
    Jinfang Yang, Zhaohua Wang, Jiajun Song, Renchong Lv, Xianzhi Wang, Jiangfeng Zhu, Zhiyi Wei. Diode-pumped 10 W femtosecond Yb:CALGO laser with high beam quality[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e33 Copy Citation Text show less
    Schematic diagram of the experimental setup. DM, dichroic mirror; GTI1, GTI2, Gires–Tournois interferometer mirrors; LD, fiber-coupled laser diode; M1–M3, concave mirrors; M4, plane mirror; OC, output coupler; SESAM, semiconductor saturable absorber mirror.
    Fig. 1. Schematic diagram of the experimental setup. DM, dichroic mirror; GTI1, GTI2, Gires–Tournois interferometer mirrors; LD, fiber-coupled laser diode; M1–M3, concave mirrors; M4, plane mirror; OC, output coupler; SESAM, semiconductor saturable absorber mirror.
    With a 10% transmittance of OC, average output power versus pump power for the Yb:CALGO laser at 1041 nm.
    Fig. 2. With a 10% transmittance of OC, average output power versus pump power for the Yb:CALGO laser at 1041 nm.
    The output power stability of the Yb:CALGO oscillator in 3 h.
    Fig. 3. The output power stability of the Yb:CALGO oscillator in 3 h.
    The output laser spectrum of Yb:CALGO femtosecond oscillator.
    Fig. 4. The output laser spectrum of Yb:CALGO femtosecond oscillator.
    Autocorrelation trace of center wavelength of 1041 nm.
    Fig. 5. Autocorrelation trace of center wavelength of 1041 nm.
    The typical pulse train of mode-locking in different timescales: (a) 2 ns, (b) 10 ns, and (c) 2 s.
    Fig. 6. The typical pulse train of mode-locking in different timescales: (a) 2 ns, (b) 10 ns, and (c) 2 s.
    Typical RF spectrum of the Yb:CALGO laser with the RBW of 1 kHz. Inset: RF spectrum at 1 GHz wide-span with the RBW of 300 kHz.
    Fig. 7. Typical RF spectrum of the Yb:CALGO laser with the RBW of 1 kHz. Inset: RF spectrum at 1 GHz wide-span with the RBW of 300 kHz.
    The beam spatial profile of the Yb:CALGO laser at the output power of 10 W.
    Fig. 8. The beam spatial profile of the Yb:CALGO laser at the output power of 10 W.
    Jinfang Yang, Zhaohua Wang, Jiajun Song, Renchong Lv, Xianzhi Wang, Jiangfeng Zhu, Zhiyi Wei. Diode-pumped 10 W femtosecond Yb:CALGO laser with high beam quality[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e33
    Download Citation