• Matter and Radiation at Extremes
  • Vol. 9, Issue 4, 047401 (2024)
Bingtao Feng1,*, Longjian Xie2,3, Xuyuan Hou1, Shucheng Liu1..., Luyao Chen1, Xinyu Zhao1, Chenyi Li1, Qiang Zhou1, Kuo Hu1, Zhaodong Liu1,4 and Bingbing Liu1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Jilin University, Changchun 130012, China
  • 2Department of Earth Sciences, University College London, London WC1E 6BS, United Kingdom
  • 3Earth and Planetary Laboratory, Carnegie Institute for Science, Washington, District of Columbia 20015, USA
  • 4College of Earth Sciences, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.1063/5.0184031 Cite this Article
    Bingtao Feng, Longjian Xie, Xuyuan Hou, Shucheng Liu, Luyao Chen, Xinyu Zhao, Chenyi Li, Qiang Zhou, Kuo Hu, Zhaodong Liu, Bingbing Liu. A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press[J]. Matter and Radiation at Extremes, 2024, 9(4): 047401 Copy Citation Text show less
    References

    [1] T.Ishii, T.Katsura, Z.Liu. A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils. Engineering, 5, 434-440(2019).

    [2] H.Gomi, Y.Higo, E.Ito, M.Sakurai, Y.Tange, N.Tsujino, J.Vazhakuttiyakam, D.Yamazaki, A.Yoneda, T.Yoshino, Y.Zhang. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. C. R. Geosci., 351, 253-259(2019).

    [3] D.Andrault, N.Guignot, Y.Higo, A.King, G.Manthilake, M.Scheel, Y.Tange, L.Xie, D.Yamazaki, A.Yoneda. Formation of bridgmanite-enriched layer at the top lower-mantle during magma ocean solidification. Nat. Commun., 11, 548(2020).

    [4] Y.Higo, T.Irifune, E.Ito, T.Shimei, Y.Tange, N.Tsujino, L.Xie, D.Yamazaki, A.Yoneda, T.Yoshino. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus. Rev. Sci. Instrum., 88, 093904(2017).

    [5] E.Ito, N.Tsujino, L.Xie, A.Yoneda. Semiconductor diamond heater in the Kawai multianvil apparatus: An innovation to generate the lower mantle geotherm. High Pressure Res., 34, 392-403(2014).

    [6] S.Bhat, D.Bondar, A.Chanyshev, Z.Chen, R.Farla, Y.Higo, T.Ishii, T.Katsura, S.Ma, K.Nishida, X.Su, Y.Tange, L.Xie, B.Yan. Simultaneous generation of ultrahigh pressure and temperature to 50 GPa and 3300 K in multi-anvil apparatus. Rev. Sci. Instrum., 92, 103902(2021).

    [7] T.Katsura, Z.Liu, K.Nishida, L.Xie, A.Yoneda. Boron-doped diamond synthesized by chemical vapor deposition as a heating element in a multi-anvil apparatus. High Pressure Res., 40, 369-378(2020).

    [8] L.Xie. Machinable boron-doped diamond as a practical heating element in multi-anvil apparatuses. Rev. Sci. Instrum., 92, 023901(2021).

    [9] H.Fei, E.Ito, L.Xie, A.Yoneda, T.Yoshino. Graphite–boron composite heater in a Kawai-type apparatus: The inhibitory effect of boron oxide and countermeasures. High Pressure Res., 36, 105-120(2016).

    [10] D.Ma, L.Wang, S.Wang, Y.Zhao, X.Zhou. Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures. Rev. Sci. Instrum., 91, 015118(2020).

    [11] D.Andrault, Y.Higo, T.Katsura, Y.Tange, L.Xie, A.Yoneda. Direct viscosity measurement of peridotite melt to lower-mantle conditions: A further support for a fractional magma-ocean solidification at the top of the lower mantle. Geophys. Res. Lett., 48, e2021GL094507(2021).

    [12] T.Katsura, E. J.Kim, K.Nishida, L.Xie. A strip-type boron-doped diamond heater synthesized by chemical vapor deposition for large-volume presses. Rev. Sci. Instrum., 91, 095108(2020).

    [13] L. Y.Chen, T.Cui, X. Y.Hou, K.Hu, X.Li, B.-B.Liu, R.Liu, Z.-D.Liu, Y. C.Shang, F. R.Shen, Q.Tao, M.-G.Yao, Q.Zhou, P.-W.Zhu. Pressure generation above 35 GPa in a Walker-type large-volume press. Chin. Phys. Lett., 37, 080701(2020).

    [14] T.Arimoto, T.Irifune, Z.Liu, M.Nishi, T.Shinmei, Y.Tange. Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys. Earth Planet. Inter., 257, 18-27(2016).

    [15]

    [16] S.Block, J. A. H.Da Jornada, G. J.Piermarini. Pressure-temperature phase diagram of zirconia. J. Am. Ceram. Soc., 68, 497-499(1985).

    [17] A.Atouf, J. M.Leger, A. S.Pereira, P. E.Tomaszewski. Pressure-induced structural phase transitions in zirconia under high pressure. Phys. Rev. B, 47, 14075(1993).

    [18] P.Bouvier, E.Djurado, T.Le Bihan, G.Lucazeau. High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia. Phys. Rev. B, 62, 8731(2000).

    [19] D.Andrault, P.Bouvier, M.Mezouar, O.Ohtaka, E.Schultz. Phase relations and equation of state of ZrO2 to 100 GPa. J. Appl. Crystallogr., 38, 727-733(2005).

    [20] W. D.Kingery. Thermal conductivity: XIV, conductivity of multicomponent systems. J. Am. Ceram. Soc., 42, 617-627(1959).

    [21] T. R.Anthony, W. F.Banholzer, J. R.Olson, R. O.Pohl, J. W.Vandersande, A.Zoltan. Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. Phys. Rev. B, 47, 14850-14856(1993).

    [22] W. S.Williams. The thermal conductivity of metallic ceramics. JOM, 50, 62-66(1998).

    [23] O.Carvalho, M. F.Cerqueira, C. M.Fernandes, D.Figueiredo, B.Guimar?es, G.Miranda, F. S.Silva. A novel approach to reduce in-service temperature in WC-Co cutting tools. Ceram. Int., 46, 3002-3008(2020).

    [24] M.Fukuda, A.Hasegawa, S.Nogami. Thermal properties of pure tungsten and its alloys for fusion applications. Fusion Eng. Des., 132, 1-6(2018).

    [25] M.Bauccio. ASM Engineering Materials Reference Book(1994).

    [26] O. L.Anderson, K.Zou. Thermodynamic functions and properties of MgO at high compression and high temperature. J. Phys. Chem. Ref. Data, 19, 69-83(1990).

    [27] J.Chen, C.Fan, D.He, A.Liang, H.Liang, F.Liu, Y.Liu, J.Wu, J.Zhang. Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature. High Pressure Res., 38, 458-467(2018).

    [28] R. R.Reeber, K.Wang. Thermal expansion, molar volume and specific heat of diamond from 0 to 3000 k. J. Electron. Mater., 25, 63-67(1996).

    [29] Q.Chen, Y.Liu, Z.Liu, T.Song, X.Sun, C.Wang. Comparative study of the structural and thermodynamic properties of MgO at high pressures and high temperatures. J. Alloys Compd., 461, 279-284(2008).

    [30] L. S.Levinson. High-temperature heat contents of TiC and ZrC. J. Chem. Phys., 42, 2891-2892(1965).

    [31] P.Parameswaran, V. T.Paul, T. N.Prasanthi, S.Raju, C.Sudha, R.Sundar, R.Thirumurugesan, H.Tripathy, N.Vijayashanthi. High temperature thermophysical properties of spark plasma sintered tungsten carbide. Int. J. Refract. Met. Hard Mater., 104, 105804(2022).

    [32] R.Hrubiak, Y.Meng, G.Shen. Microstructures define melting of molybdenum at high pressures. Nat. Commun., 8, 14562(2017).

    [33] T.Fujisawa, H.Fukui, K.Funakoshi, T.Irifune, T.Kikegawa, T.Kunisada, K.Kuroda, O.Ohtaka, W.Utsumi. Phase relations and equations of state of ZrO2 under high temperature and high pressure. Phys. Rev. B, 63, 174108(2001).

    [34] J.Hernlund, K.Leinenweber, D.Locke, J. A.Tyburczy. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Mineral., 91, 295-305(2006).

    [35] R. W.Luth, Y.Thibault, M. J.Walter, K.Wei. Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can. J. Phys., 73, 273-286(1995).

    Bingtao Feng, Longjian Xie, Xuyuan Hou, Shucheng Liu, Luyao Chen, Xinyu Zhao, Chenyi Li, Qiang Zhou, Kuo Hu, Zhaodong Liu, Bingbing Liu. A virtual thermometer for ultrahigh-temperature–pressure experiments in a large-volume press[J]. Matter and Radiation at Extremes, 2024, 9(4): 047401
    Download Citation