• Journal of Inorganic Materials
  • Vol. 38, Issue 10, 1237 (2023)
Jieyan DAI1,2, Aihu FENG2,*, Le MI2, Yang YU2..., Yuanyuan CUI3 and Yun YU1,2,*|Show fewer author(s)
Author Affiliations
  • 11. College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
  • 22. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 33. School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
  • show less
    DOI: 10.15541/jim20230095 Cite this Article
    Jieyan DAI, Aihu FENG, Le MI, Yang YU, Yuanyuan CUI, Yun YU. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations[J]. Journal of Inorganic Materials, 2023, 38(10): 1237 Copy Citation Text show less
    References

    [1] T LIMERO, E REESE, P CHENG et al. Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. International Journal for Ion Mobility Spectrometry, 81(2011).

    [2] N S ABRAHAM, M M HASEGAWA, M S SECUNDA. Application of the molecular adsorber coating technology on the Ionospheric Connection Explorer Program. Proceedings of SPIE(2016).

    [3] T LIMERO, E REESE, W T WALLACE et al. Results from the air quality monitor (gas chromatograph-differential mobility spectrometer) experiment on board the international space station. International Journal for Ion Mobility Spectrometry, 189(2012).

    [4] J T SANDERS. Molecular contamination of an EUV instrument in geosynchronous orbit. Proceedings of SPIE, 5526: 44(2004).

    [5] J S CANHAM. Revisiting mechanisms of molecular contamination induced laser optic damage. Proceedings of SPIE(2007).

    [6] C W CHANG, K KANNENBERG, M H CHIDESTER. Development of versatile molecular transport model for modeling spacecraft contamination. Proceedings of SPIE(2010).

    [7] S S GUO, W D AI, J X FEI et al. Study on the kinetic characteristics of trace harmful gases for a two-person-30-day integrated CELSS test. Environmental Science and Pollution Research, 7020(2015).

    [8] V SNITKA, D BATIUSKAITE, I BRUZAITE et al. Surface- enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS Space Journal, 509(2021).

    [9] N SHIMOSAKO, T EGASHIRA, K YOSHINO et al. Effects of vacuum on photocatalytic activity of TiO2. Proceedings of SPIE, 10748: 1074810(2018).

    [10] N SHIMOSAKO, K YOSHINO, K SHIMAZAKI et al. Tolerance to electron beams of TiO2 film photocatalyst. Thin Solid Films, 686: 137421(2019).

    [11] M DIBOUNE, H NOUALI, M SOULARD et al. Green hybrid zeolite coatings for on-orbit molecular decontamination. Microporous and Mesoporous Materials, 307: 110478(2020).

    [12] N SHIMOSAKO, H SAKAMA. Influence of vacuum environment on photocatalytic degradation of methyl red by TiO2 thin film. Acta Astronaut, 178: 693(2021).

    [13] A H FENG, Y YU, L MI et al. Synthesis and VOCs adsorption performance of surfactant-templated USY zeolites with controllable mesopores. Chemical Physics Letters, 798: 139578(2022).

    [14] N S ABRAHAM, D E JALLICE. Preliminary testing of NASA's molecular adsorber coating technology for future missions to Mars. Proceedings of SPIE(2018).

    [15] S STRAKA, W PETERS, M HASEGAWA et al(2010).

    [16] H Y CHEN, H X XI, X Y CAI et al. Experimental and molecular simulation studies of a ZSM-5-MCM-41 micro-mesoporous molecular sieve. Microporous and Mesoporous Materials, 396(2009).

    [17] H MORADI, H AZIZPOUR, H BAHMANYAR et al. Effect of Si/Al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chemical Engineering & Technology, 1221(2021).

    [18] J QIAO, S S YANG, J J LI et al. Dynamic simulation of deposition processes of spacecraft molecular contamination. Tehnicki Vjesnik- Technical Gazette, 321(2021).

    [19] M Y WANG, Y SHENG. Molecular simulation to analyze the influence of ultrafine particles on activated carbon adsorbing low concentration toluene. Building and Environment, 213: 108875(2022).

    [20] F ZHAO, X S SUN, R F LU et al. Adsorption of methanol, methanal, toluene, ethylbenzene, and styrene in zeolites: a grand canonical Monte Carlo simulation study. Canadian Journal of Chemistry, 1241(2017).

    [21] H MORADI, H AZIZPOUR, H BAHMANYAR et al. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite. Chinese Journal of Chemical Engineering, 43: 70(2022).

    [22] G MAURIN, Y BELMABKHOUT, G PIRNGRUBER et al. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments. Adsorption-Journal of the International Adsorption Society, 453(2007).

    [23] F PORCHER, J L PAILLAUD, L GABEROVA et al. Monitoring by in situ neutron diffraction of simultaneous dehydration and Ni2+ mobility in partially exchanged NaY zeolites. New Journal of Chemistry, 4228(2016).

    [24] T AMMOULI, J L PAILLAUD, H NOUALI et al. Insights into water adsorption in potassium-exchanged X-type faujasite zeolite: molecular simulation and experiment. The Journal of Physical Chemistry C, 19405(2021).

    [25] P XIONG, P HE, Y X QU et al. The adsorption properties of NaY zeolite for separation of ethylene glycol and 1, 2-butanediol: experiment and molecular modelling. Green Energy & Environment, 102(2021).

    [26] L Q SONG, X S DU, Y R CHEN et al. Screening of zeolites for H2S adsorption in mixed gases: GCMC and DFT simulations. Microporous and Mesoporous Materials, 328: 111495(2021).

    [27] B VUJIC, A P LYUBARTSEV. Transferable force-field for modelling of CO2, N2, O2 and Ar in all silica and Na+ exchanged zeolites. Modelling and Simulation in Materials Science and Engineering, 045002(2016).

    [28] H Y CHEN, W L WANG, J DING et al. CO2 adsorption capacity of FAU zeolites in presence of H2O: a Monte Carlo simulation study. Energy Procedia, 105: 4370(2017).

    [29] S Y HOU, Y L TANG, T L ZHU et al. Adsorptive removal of gas phase naphthalene on ordered mesoporous carbon. Journal of Hazardous Materials, 436: 129208(2022).

    [30] M RAHMATI, H MODARRESS. Selectivity of new siliceous zeolites for separation of methane and carbon dioxide by Monte Carlo simulation. Microporous and Mesoporous Materials, 176: 168(2013).

    [31] Z KEYVANLOO, A N POUR, F MOOSAVI et al. Molecular dynamic simulation studies of adsorption and diffusion behaviors of methanol and ethanol through ZSM-5 zeolite. Journal of Molecular Graphics & Modelling, 110: 108048(2022).

    [32] A FENG, Y YU, L MI et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous and Mesoporous Materials, 280: 211(2019).

    [33] A FENG, Y YU, L MI et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite. Microporous and Mesoporous Materials, 290: 109646(2019).

    [34] R YOSHIMOTO, K HARA, K OKUMURA et al. Analysis of toluene adsorption on Na-form zeolite with a temperature-programmed desorption method. The Journal of Physical Chemistry C, 1474(2007).

    [35] E P HESSOU, L A BEDE, H JABRAOUI et al. Adsorption of toluene and water over cationic-exchanged Y zeolites: a DFT exploration. Molecules, 5486(2021).

    [36] H M ZHENG, L ZHAO, J J JI et al. Unraveling the adsorption mechanism of mono- and diaromatics in faujasite zeolite. ACS Applied Materials & Interfaces, 10190(2015).

    [37] C C BRUNCHI, J M C SANCHEZ, A I STANKIEWICZ et al. Adsorption of volatile organic compounds. experimental and theoretical study. Industrial & Engineering Chemistry Research, 16697(2012).

    Jieyan DAI, Aihu FENG, Le MI, Yang YU, Yuanyuan CUI, Yun YU. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations[J]. Journal of Inorganic Materials, 2023, 38(10): 1237
    Download Citation