• Opto-Electronic Engineering
  • Vol. 46, Issue 7, 190194 (2019)
Jiang Yan1、2, Liu Ruqing1、*, Zhu Jingguo1, and Wang Yu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.190194 Cite this Article
    Jiang Yan, Liu Ruqing, Zhu Jingguo, Wang Yu. A high-performance CMOS FDMA for pulsed TOF imaging LADAR system[J]. Opto-Electronic Engineering, 2019, 46(7): 190194 Copy Citation Text show less
    References

    [1] Williams G M. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation sys-tems[J]. Optical Engineering, 2017, 56(3): 031224.

    [2] Zheng H, Ma R, Zhu Z M. A linear and wide dynamic range transimpedance ampli.er with adaptive gain control tech-nique[J]. Analog Integrated Circuits and Signal Processing, 2017, 90(1): 217–226.

    [3] Behroozpour B, Sandborn P A M, Wu M C, et al. Lidar system architectures and circuits[J]. IEEE Communications Magazine, 2017, 55(10): 135–142.

    [4] Cho H S, Kim C H, Lee S G. A high-sensitivity and low-walk error LADAR receiver for military application[J]. IEEE Transac-tions on Circuits and Systems I: Regular Papers, 2014, 61(10): 3007–3015.

    [5] Zheng H, Ma R, Liu M L, et al. High sensitivity and wide dy-namic range analog front-end circuits for pulsed TOF 4-D im-aging LADAR receiver[J]. IEEE Sensors Journal, 2018, 18(8): 3114–3124.

    [6] Ngo T H, Kim C H, Kwon Y J, et al. Wideband receiver for a three-dimensional ranging LADAR system[J]. IEEE Transac-tions on Circuits and Systems I: Regular Papers, 2013, 60(2): 448–456.

    [7] McDonough R N, Whalen A D. Detection of Signals in Noise[M]. 2nd ed. San Diego, CA, USA: Academic, 1995.

    [8] Ruotsalainen T, Palojarvi P, Kostamovaara J. A wide dynamic range receiver channel for a pulsed time-of-flight laser radar[J]. IEEE Journal of Solid-State Circuits, 2001, 36(8): 1228–1238.

    [9] Zheng H, Ma R, Liu M L, et al. A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR ap-plication[J]. IEEE Transactions on Instrumentation and Mea-surement, 2018, 67(11): 2684–2691.

    [10] Liu J B, Gu M, Chen H D, et al. A CMOS front-end circuit for sonet oc-96 receiver[C]//2006 International Conference on Communications, Circuits and Systems, Guilin, China, 2006, 3: 1961–1965.

    [11] Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback[J]. IEEE Journal of Solid-State Circuits, 2007, 42(5): 1111–1120.

    [12] Hu Y, Wang Z G, Feng J, et al. 5Gb/s 0.25μm CMOS limiting amplifier[J]. Chinese Journal of Semiconductors, 2003, 24(12): 1250–1254.

    [13] Xue Z F, Li Z Q,Wang Z G, et al. A low noise, 1.25Gb/s front-end amplifier for optical receivers[J]. Chinese Journal of Semiconductors, 2006, 27(8): 1373–1377.

    [14] Wang Y J, Khan M Z, Raut R. A fully differential CMOS limiting amplifier with active Inductor for optical receiver[C]//Canadian Conference on Electrical and Computer Engineering, Saska-toon, Canada, 2005: 1751–1754.

    [15] Zheng R. 15 Gb/s CMOS monolithic parallel front-end amplifier for optical receiver design[D]. Nanjing: Southeast University, 2005.

    [16] Liang B L, Kwasniewski T, Wang Z G, et al. A monolithic 10-Gb/s CMOS limiting amplifier for low cost optical commu-nication systems[C]//Proceedings of APCC2008, Tokyo, Japan, 2008.

    [17] Kurtti S, Kostamovaara J. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 835–847.

    [18] Ahmed M G, Talegaonkar M, Elkholy A, et al. A 12-Gb/s -16.8-dBm OMA sensitivity 23-mW optical receiver in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 445–457.

    Jiang Yan, Liu Ruqing, Zhu Jingguo, Wang Yu. A high-performance CMOS FDMA for pulsed TOF imaging LADAR system[J]. Opto-Electronic Engineering, 2019, 46(7): 190194
    Download Citation