• Matter and Radiation at Extremes
  • Vol. 6, Issue 1, 014401 (2021)
Zhen-Chi Zhang1, Tao Yang1, Guang-Yue Hu1、2、a), Meng-Ting Li1, Wen Luo3, Ning An4、5, and Jian Zheng1、6
Author Affiliations
  • 1CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2CAS Center for Excellence in Ultra-Intense Laser Science (CEULS), Shanghai 200031, China
  • 3School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 4National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 5Anhui Specreation Instrument Technology Co., Ltd., Hefei, Anhui 230088, China
  • 6Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1063/5.0026005 Cite this Article
    Zhen-Chi Zhang, Tao Yang, Guang-Yue Hu, Meng-Ting Li, Wen Luo, Ning An, Jian Zheng. Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays[J]. Matter and Radiation at Extremes, 2021, 6(1): 014401 Copy Citation Text show less
    References

    [1] H.-S. Park, H.-K. Chung, D. M. Chambers et al. High-energy radiography using high-intensity, short-pulse lasers. Phys. Plasmas, 13, 056309(2006).

    [2] C. C. Chamberlain, Z. Jiang, E. Scalzetti, J. C. Kieffer, A. Krol, Z. Ichalalene. Future of laser-based X-ray sources for medical imaging. Appl. Phys. B, 74, s75-s81(2002).

    [3] N. Hoffman, H. W. Herrmann, D. C. Wilson et al. Diagnosing inertial confinement fusion gamma ray physics (invited). Rev. Sci. Instrum., 81, 10D333(2010).

    [4] Y. H. Kim, H. W. Herrmann, N. M. Hoffman et al. Measurement of areal density in the ablators of inertial-confinement-fusion capsules via detection of ablator (n, n′γ) gamma-ray emission. Phys. Plasmas, 20, 042705(2013).

    [5] R. Behrens, R. Nolte, M. Schnürer et al. A TLD-based few-channel spectrometer for x ray fields with high fluence rates. Radiat. Prot. Dosim., 84, 367-370(1999).

    [6] P. Ambrosi, R. Behrens. A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates. Radiat. Prot. Dosim., 101, 73-76(2002).

    [7] J. A. King, C. D. Chen, M. H. Key et al. A Bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters. Rev. Sci. Instrum., 79, 10E305(2008).

    [8] R. Behrens. A spectrometer for pulsed and continuous photon radiation. J. Instrum., 4, P03027(2009).

    [9] A. H. Compton. A quantum theory of the scattering of x-rays by light elements. Phys. Rev., 21, 483-502(1923).

    [10] Y. Kim, H. W. Herrmann, T. J. Hilsabeck et al. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved gamma-ray diagnostic for the National Ignition Facility. Rev. Sci. Instrum., 83, 10D311(2012).

    [11] N. Riley, E. Liang, A. Henderson et al. Ultra-intense gamma-rays created using the Texas Petawatt Laser. High Energy Density Phys., 12, 46-56(2014).

    [12] D. J. Corvan, M. Zepf, G. Sarri. Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum., 85, 065119(2014).

    [13] A. T. Nelms. Graphs and the Compton energy-angle relationship and the Klein-Nishina formula from 10 keV to 500 MeV. Phys. Today, 7, 18(1953).

    [14] R. D. Evans. The Atomic Nucleus, 673-712(1955).

    [15] K. Siegbahn, C. M. Davisson. Interaction of γ-Radiation with Matter Alpha-, Beta- and Gamma-Ray Spectroscopy, 37-78(1965).

    [16] L. D. Landau, E. M. Lifshitz. The Classical Theory of Fields(1980).

    [17] B. R. Maddox, H. S. Park, B. A. Remington et al. High-energy x-ray backlighter spectrum measurements using calibrated image plates. Rev. Sci. Instrum., 82, 023111(2011).

    [18] Y. Honda, S. Okuda, R. Kodama, T. Sato, T. Takahashi, T. Yabuuchi, T. Ikeda, Y. Kitagawa, K. A. Tanaka. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum., 76, 013507(2005).

    [19]

    [20] M.-t. Li, G.-y. Hu, T. Yang et al. Compact broadband Compton spectroscopy for intense laser-driven gamma-rays. Rev. Sci. Instrum..

    [21] J. Allison, S. Agostinelli, K. Amako et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [22] B. R. Maddox, G. J. Williams, H. Chen et al. Calibration and equivalency analysis of image plate scanners. Rev. Sci. Instrum., 85, 11E604(2014).

    [23] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl., 4, 1035-1038(1963).

    [24] J. N. Franklin. Minimum principles for ill-posed problems. SIAM J. Math. Anal., 9, 638-650(1978).

    [25] K. Miller. Least squares methods for ill-posed problems with a prescribed bound. SIAM J. Math. Anal., 1, 52-74(1970).

    Zhen-Chi Zhang, Tao Yang, Guang-Yue Hu, Meng-Ting Li, Wen Luo, Ning An, Jian Zheng. Compact broadband high-resolution Compton spectroscopy for laser-driven high-flux gamma rays[J]. Matter and Radiation at Extremes, 2021, 6(1): 014401
    Download Citation