• Chinese Optics Letters
  • Vol. 19, Issue 12, 122702 (2021)
Yang Xue1、2, Wei Chen1、*, Shuang Wang1, Zhenqiang Yin1, Lei Shi2, and Zhengfu Han1、**
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
  • show less
    DOI: 10.3788/COL202119.122702 Cite this Article Set citation alerts
    Yang Xue, Wei Chen, Shuang Wang, Zhenqiang Yin, Lei Shi, Zhengfu Han. Airborne quantum key distribution: a review [Invited][J]. Chinese Optics Letters, 2021, 19(12): 122702 Copy Citation Text show less
    Hierarchical quantum network operating in different atmospheric layers. LEO, low Earth orbit; MEO, medium Earth orbit; GEO, geostationary Earth orbit; HAP platform, high-altitude platform; UAV, unmanned aerial vehicle.
    Fig. 1. Hierarchical quantum network operating in different atmospheric layers. LEO, low Earth orbit; MEO, medium Earth orbit; GEO, geostationary Earth orbit; HAP platform, high-altitude platform; UAV, unmanned aerial vehicle.
    Recent progress in airborne quantum communications. In clockwise order, the first downlink QKD demonstration in 2013 using the hot-air balloon by Wang et al.[46], the basis detection and compensation experiment in 2014 using the Z-9 helicopter by Zhang et al. from the Chinese Academy of Sciences[50], the first uplink QKD demonstration in 2017 using the Twin Otter research aircraft by Pugh et al. from the University of Waterloo[45], the first drone-based entanglement distribution in 2020 using UAV by Liu et al. from the Nanjing University[48,49], the drone-based QKD test in 2017 using DJI S1000+ octocopter by Hill et al. from the University of Illinois[5153" target="_self" style="display: inline;">–53], the free-space QKD in 2015 based on a moving pick-up truck by Bourgoin et al. from the University of Waterloo[54], and the first air-to-ground QKD demonstration in 2013 using the Dornier-228 aircraft by Nauerth et al. from the Ludwig-Maximilians University[44].
    Fig. 2. Recent progress in airborne quantum communications. In clockwise order, the first downlink QKD demonstration in 2013 using the hot-air balloon by Wang et al.[46], the basis detection and compensation experiment in 2014 using the Z-9 helicopter by Zhang et al. from the Chinese Academy of Sciences[50], the first uplink QKD demonstration in 2017 using the Twin Otter research aircraft by Pugh et al. from the University of Waterloo[45], the first drone-based entanglement distribution in 2020 using UAV by Liu et al. from the Nanjing University[48,49], the drone-based QKD test in 2017 using DJI S1000+ octocopter by Hill et al. from the University of Illinois[5153" target="_self" style="display: inline;">–53], the free-space QKD in 2015 based on a moving pick-up truck by Bourgoin et al. from the University of Waterloo[54], and the first air-to-ground QKD demonstration in 2013 using the Dornier-228 aircraft by Nauerth et al. from the Ludwig-Maximilians University[44].
    Block diagrams of airborne QKD system. QRNG, quantum random number generator; Mod, modulator; Aux, auxiliary devices; TDC, time-to-digital converter; ATP, acquisition, tracking, and pointing; FSM, fast-steering mirror; PSD, position-sensitive detector; C, coupler; M, mirror; SPD, single-photon detector.
    Fig. 3. Block diagrams of airborne QKD system. QRNG, quantum random number generator; Mod, modulator; Aux, auxiliary devices; TDC, time-to-digital converter; ATP, acquisition, tracking, and pointing; FSM, fast-steering mirror; PSD, position-sensitive detector; C, coupler; M, mirror; SPD, single-photon detector.
    Link configurations for airborne QKD.
    Fig. 4. Link configurations for airborne QKD.
    Secure key rates with different PER.
    Fig. 5. Secure key rates with different PER.
    Quantum source and transmitter in the ground-to-air QKD demonstration[45].
    Fig. 6. Quantum source and transmitter in the ground-to-air QKD demonstration[45].
    ATP system in the drone-based entanglement distribution experiment[48].
    Fig. 7. ATP system in the drone-based entanglement distribution experiment[48].
    Schematic diagrams of time synchronization precision.
    Fig. 8. Schematic diagrams of time synchronization precision.
    InitiativePlatformDistance and LossHeightVelocity (km/h)ResultsWavelength (nm)System Clock Rate (MHz)Quantum Signal DetectorOperation Time
    Wang et al., 2013[46]Hot-air balloon20 kmN/A0Downlink, polarization-coded BB84 268.87 bps (secure key)850100Si avalanche photodiode (APD)aNight
    3050dB
    Nauerth et al., 2013[44]Dornier-22820 km1.1 km290Downlink, polarization-coded BB84 145 bps (sifted key)85010Si APDAfter sunset
    38 dB
    Zhang et al., 2014[50]Z-92.5–7.5 km<1km100Downlink (polarization basis detection and compensation)8501Si APDNight
    Pugh et al., 2017[45]Twin Otter3–10 km1.6 km198–259Uplink, polarization-coded BB84 263.7–347 bps (secure key)785400Si APDNight
    34.4–51.1 dB
    Liu et al., 2020[48]UAV200 m 12 dB<100m0Downlink polarization entanglement distribution (CHSH-S parameter 2.41±0.14)810N/ASi APDDaytime/clear/rainy night
    Alexander et al., 2017[5153]UAV (DJI S1000+)>500mN/AN/ADownlink, project: polarization-encoded BB84650100Si APDIndoor/outdoor night
    10–20 dB
    Quintana et al., 2019[59]UAV1 kmN/AN/ADownlink/uplink, project: BB84 based on photonic integrated circuits (PICs)1550N/AIndium gallium arsenide (InGaAs) detector in Geiger modebN/A
    <25dB
    Liu et al., 2021[49]UAV∼1 km<100m0Relayed entanglement distribution (CHSH-S parameter 2.59±0.11)810N/ASi APDNight
    20 dB
    Table 1. List of Recent Airborne Quantum Communication Experiments and Related Projects
    Representative ExamplesNauerth et al., 2013[44]Zhang et al., 2014[50]Liu et al., 2020[48]
    ComponentsTransmitterReceiverTransmitterReceiverTransmitterReceiver
    Coarse pointingTypeTorque2-axis2-axis2-axis3-axis3-axis
    motorsgimbalgimbalgimbalgimbalgimbal
    Tracking rangeAzimuth ±45°Azimuth ±5°Azimuth ±45°Azimuth ±45°
    ElevationElevationElevationElevation
    ±70°±5°±15°±15°
    Fine pointingType RangeVCMPMFSM ±0.7mradFSM ±0.7mradPZT FSM ±1.75radPZT FSM ±1.75rad
    Coarse cameraTypeInGaAsInGaAsCMOSCMOSCMOSCMOS
    FOV48 mrad12.8 mrad2° (35mrad)1° (17.4mrad)0.11rad×0.08rad0.11rad×0.08rad
    Fine cameraType4QDInGaAsCMOSCMOSPSDPSD
    FOV3.3 mrad960 µrad512 µrad512 µrad40mrad×40mrad40mrad×40mrad
    Frame rate400 Hz2.3 kHz2.3 kHz60 kHz60 kHz
    Beacon laserDivergence3 mrad1 mrad10 mrad10 mrad
    Tracking error500 µrad±200µrad±5µrad1.15µm×1.33µm (2.26×104µrad)0.62µm×0.46µm (1.08×104µrad)
    Table 2. ATP Performance of the Typical Airborne Quantum Communication Experiments
    Yang Xue, Wei Chen, Shuang Wang, Zhenqiang Yin, Lei Shi, Zhengfu Han. Airborne quantum key distribution: a review [Invited][J]. Chinese Optics Letters, 2021, 19(12): 122702
    Download Citation