• Acta Optica Sinica
  • Vol. 42, Issue 3, 0327013 (2022)
Yizhao Liu1, Xiaojie Zuo1, Zhihui Yan1、2、*, and Xiaojun Jia1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS202242.0327013 Cite this Article Set citation alerts
    Yizhao Liu, Xiaojie Zuo, Zhihui Yan, Xiaojun Jia. Analysis of Quantum Interferometer Based on Optical Parametric Amplifier[J]. Acta Optica Sinica, 2022, 42(3): 0327013 Copy Citation Text show less
    References

    [1] Mason D, Chen J X, Rossi M et al. Continuous force and displacement measurement below the standard quantum limit[J]. Nature Physics, 15, 745-749(2019).

    [2] Taylor M A, Janousek J, Daria V et al. Subdiffraction-limited quantum imaging within a living cell[J]. Physical Review X, 4, 011017(2014).

    [3] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [4] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 23, 1693-1708(1981).

    [5] Bondurant R S, Shapiro J H. Squeezed states in phase-sensing interferometers[J]. Physical Review D, 30, 2548-2556(1984).

    [6] Yan Z H, Wu L, Jia X J et al. Quantum entanglement among multiple memories for continuous variables[J]. Advanced Quantum Technologies, 4, 2100071(2021).

    [7] Zhou Y Y, Yu J, Yan Z H et al. Entanglement source with high entanglement degree based on wedged nonlinear crystals[J]. Acta Optica Sinica, 38, 0727001(2018).

    [8] Wu L, Liu Y H, Deng R J et al. Experimental preparation of bipartite polarization entangled optical fields at 795 nm[J]. Acta Optica Sinica, 37, 0527001(2017).

    [9] Degen C L, Reinhard F, Cappellaro P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).

    [10] Ma Y Q, Miao H X, Pang B H et al. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement[J]. Nature Physics, 13, 776-780(2017).

    [11] Lawrie B J, Lett P D, Marino A M et al. Quantum sensing with squeezed light[J]. ACS Photonics, 6, 1307-1318(2019).

    [12] Mitchell M W, Lundeen J S, Steinberg A M. Super-resolving phase measurements with a multiphoton entangled state[J]. Nature, 429, 161-164(2004).

    [13] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 96, 010401(2006).

    [14] Nagata T, Okamoto R. O’Brien J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 316, 726-729(2007).

    [15] Huo M R, Qin J L, Sun Y R et al. Generation of intensity difference squeezed state of light at optical fiber communication wavelength[J]. Journal of Quantum Optics, 24, 134-140(2018).

    [16] Zhang C, Feng J X, Li Y J et al. Investigation on the transmission characteristic of squeezed vacuum state over optical fibers[J]. Journal of Quantum Optics, 27, 8-14(2021).

    [17] Xiao M, Wu L A, Kimble H J. Precision measurement beyond the shot-noise limit[J]. Physical Review Letters, 59, 278-281(1987).

    [18] Grangier P, Slusher R E, Yurke B et al. Squeezed-light-enhanced polarization interferometer[J]. Physical Review Letters, 59, 2153-2156(1987).

    [19] Tse M, Yu H, Kijbunchoo N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).

    [20] McKenzie K, Shaddock D A, McClelland D E et al. Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection[J]. Physical Review Letters, 88, 231102(2002).

    [21] Goda K, Miyakawa O, Mikhailov E E et al. A quantum-enhanced prototype gravitational-wave detector[J]. Nature Physics, 4, 472-476(2008).

    [22] Eberle T, Steinlechner S, Bauchrowitz J et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 104, 251102(2010).

    [23] Aasi J, Abadie J, Abbott B P et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 7, 613-619(2013).

    [24] Yurke B. McCall S L, Klauder J R. SU(2) and SU(1, 1) interferometers[J]. Physical Review A, 33, 4033-4054(1986).

    [25] Plick W N, Dowling J P, Agarwal G S. Coherent-light-boosted, sub-shot noise, quantum interferometry[J]. New Journal of Physics, 12, 083014(2010).

    [26] Ou Z Y. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer[J]. Physical Review A, 85, 023815(2012).

    [27] Hudelist F, Kong J, Liu C J et al. Quantum metrology with parametric amplifier-based photon correlation interferometers[J]. Nature Communications, 5, 3049(2014).

    [28] Manceau M, Leuchs G, Khalili F et al. Detection loss tolerant supersensitive phase measurement with an SU(1, 1) interferometer[J]. Physical Review Letters, 119, 223604(2017).

    [29] Coelho A S. Barbosa F A S, Cassemiro K N, et al. Three-color entanglement[J]. Science, 326, 823-826(2009).

    [30] Roslund J, de Araújo R M, Jiang S F et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nature Photonics, 8, 109-112(2014).

    [31] Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb[J]. Physical Review Letters, 112, 120505(2014).

    [32] Yan Z H, Wu L, Jia X J et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 8, 718(2017).

    [33] Zhou Y Y, Yu J, Yan Z H et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field[J]. Physical Review Letters, 121, 150502(2018).

    [34] Huo M R, Qin J L, Cheng J L et al. 4(10): eaas9401(2018).

    [35] Asavanant W, Shiozawa Y, Yokoyama S et al. Generation of time-domain-multiplexed two-dimensional cluster state[J]. Science, 366, 373-376(2019).

    [36] Larsen M V, Guo X S, Breum C R et al. Deterministic generation of a two-dimensional cluster state[J]. Science, 366, 369-372(2019).

    [37] Vahlbruch H, Mehmet M, Danzmann K et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 117, 110801(2016).

    [38] Yan Z H, Qin J L, Qin Z Z et al. Generation of non-classical states of light and their application in deterministic quantum teleportation[J]. Fundamental Research, 1, 43-49(2021).

    [39] Sun Y R, Huo M R, Yan Z H et al. Quantum teleportation based on four-partite entangled states[J]. Acta Optica Sinica, 38, 0527001(2018).

    [40] Zuo X J, Yan Z H, Feng Y N et al. Quantum interferometer combining squeezing and parametric amplification[J]. Physical Review Letters, 124, 173602(2020).

    [41] Campos R A. Saleh B E A, Teich M C. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics[J]. Physical Review A, 40, 1371-1384(1989).

    Yizhao Liu, Xiaojie Zuo, Zhihui Yan, Xiaojun Jia. Analysis of Quantum Interferometer Based on Optical Parametric Amplifier[J]. Acta Optica Sinica, 2022, 42(3): 0327013
    Download Citation