• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 011408 (2020)
Chenhua Liu1、2, Xijing Zhu1、2, Xiangmeng Li1、2、*, and Yutian Zhao1、2
Author Affiliations
  • 1Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan, Shanxi 0 30051, China
  • 2School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 0 30051, China
  • show less
    DOI: 10.3788/LOP57.011408 Cite this Article Set citation alerts
    Chenhua Liu, Xijing Zhu, Xiangmeng Li, Yutian Zhao. Wettability of Nanosecond Laser-Induced Titanium Oxide Alloys and Coatings[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011408 Copy Citation Text show less
    References

    [1] Song D. Wettability and drag reduction of the superhydrophobic surfaces Xi'an:[D]. Northwestern Polytechnical University(2016).

    [2] Mouterde T, Lehoucq G, Xavier S et al. Antifogging abilities of model nanotextures[J]. Nature Materials, 16, 658-663(2017).

    [3] Lai Y K, Pan F, Xu C et al. In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion[J]. Advanced Materials, 25, 1682-1686(2013).

    [4] He M, Ding Y, Chen J et al. Spontaneous uphill movement and self-removal of condensates on hierarchical tower-like arrays[J]. ACS Nano, 10, 9456-9462(2016).

    [5] Ye Y X, Liu Y F, Du T T et al. Experimental study on gradient wettable surface fabricated by laser rapid processing[J]. Chinese Journal of Lasers, 46, 1002001(2019).

    [6] Yang Q B, Liu S J, Wang Y T et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser[J]. Laser & Optoelectronics Progress, 54, 091406(2017).

    [7] Cheng J, Cao J L, Zhao C et al. Infiltration conversion characteristics of nanosecond laser processed aluminum plates under vacuum ambient[J]. Applied Laser, 39, 102-106(2019).

    [8] Lu J L, Huang T, Liu Z et al. Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments[J]. Applied Surface Science, 459, 257-262(2018).

    [9] Pan H H, Wang Z, Fan W Z et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser[J]. Chinese Journal of Lasers, 43, 0802002(2016).

    [10] Gao X, Liu L, Song C et al. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma[J]. Journal of Physics D: Applied Physics, 48, 175205(2015).

    [11] Tao H Y, Lin J Q, Hao Z Q et al. Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Applied Physics Letters, 100, 201111(2012).

    [12] Huang J H, Liang G W, Li J et al. Femtosecond laser processing of polycrystalline diamond micro-structure array[J]. Chinese Journal of Lasers, 44, 0302007(2017).

    [13] Jiao Y L, Li C Z, Wu S Z et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 10, 16867-16873(2018).

    [14] Zhao Y P[J]. Surface and interface physics and mechanics(2012).

    Chenhua Liu, Xijing Zhu, Xiangmeng Li, Yutian Zhao. Wettability of Nanosecond Laser-Induced Titanium Oxide Alloys and Coatings[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011408
    Download Citation