• Photonics Research
  • Vol. 12, Issue 4, 767 (2024)
Jinlai Cui1,2, Jun Zheng1,2,*, Yupeng Zhu1,2, Xiangquan Liu1,2..., Yiyang Wu1,2, Qinxing Huang1,2, Yazhou Yang1,2, Zhipeng Liu1,2, Zhi Liu1,2, Yuhua Zuo1,2 and Buwen Cheng1,2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.514764 Cite this Article Set citation alerts
    Jinlai Cui, Jun Zheng, Yupeng Zhu, Xiangquan Liu, Yiyang Wu, Qinxing Huang, Yazhou Yang, Zhipeng Liu, Zhi Liu, Yuhua Zuo, Buwen Cheng, "High-speed GeSn resonance cavity enhanced photodetectors for a 50 Gbps Si-based 2 μm band communication system," Photonics Res. 12, 767 (2024) Copy Citation Text show less
    References

    [1] A. D. Ellis. The nonlinear Shannon limit and the need for new fibres. Proc. SPIE, 8434, 84340H(2012).

    [2] G. B. Xavier, G. Lima. Quantum information processing with space-division multiplexing optical fibres. Commun. Phys., 3, 9(2020).

    [3] Q. Y. Yi, S. Zheng, Z. W. Yan. Silicon photonic flat-top WDM (de)multiplexer based on cascaded Mach-Zehnder interferometers for the 2  μm wavelength band. Opt. Express, 30, 28232-28241(2022).

    [4] R. Soref. Enabling 2  μm communications. Nat. Photonics, 9, 358-359(2015).

    [5] X. Wang, W. H. Shen, W. X. Li. High-speed silicon photonic Mach-Zehnder modulator at 2  μm. Photon. Res., 9, 535-540(2021).

    [6] Y. J. Liu, Z. Y. Li, D. Li. Thermo-optic tunable silicon arrayed waveguide grating at 2-μm wavelength band. IEEE Photon. J., 12, 4900308(2020).

    [7] Y. J. Liu, X. Wang, Y. Yao. Silicon photonic arrayed waveguide grating with 64 channels for the 2 μm spectral range. Opt. Lett., 47, 1186-1189(2022).

    [8] X. Li, L. Peng, Z. Liu. 30 GHz GeSn photodetector on SOI substrate for 2 μm wavelength application. Photon. Res., 9, 494-500(2021).

    [9] Y. C. Tai, S. An, P. R. Huang. Transfer-printing-enabled GeSn flexible resonant-cavity-enhanced photodetectors with strain-amplified mid-infrared optical responses. Nanoscale, 15, 7745-7754(2023).

    [10] Q. M. Chen, S. T. Wu, L. Zhang. Transferable single-layer GeSn nanomembrane resonant-cavity-enhanced photodetectors for 2 μm band optical communication and multi-spectral short-wave infrared sensing. Nanoscale, 14, 7341-7349(2022).

    [11] Q. M. Chen, S. T. Wu, L. Zhang. GeSn-on-insulator dual-waveband resonant-cavity-enhanced photodetectors at the 2 μm and 1.55 μm optical communication bands. Opt. Lett., 46, 3809-3812(2021).

    [12] M. Li, J. Zheng, X. Liu. GeSn resonance cavity enhanced photodetector with gold bottom reflector for the L band optical communication. Opt. Lett., 47, 4315-4318(2022).

    [13] H. Tran, T. Pham, J. Margetis. Si-based GeSn photodetectors toward mid-infrared imaging applications. ACS Photon., 6, 2807-2815(2019).

    [14] H. Tran, W. Du, S. A. Ghetmiri. Systematic study of Ge1-xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J. Appl. Phys., 119, 103106(2016).

    [15] S. Assali, J. Nicolas, O. Moutanabbir. Enhanced Sn incorporation in GeSn epitaxial semiconductors via strain relaxation. J. Appl. Phys., 125, 025304(2019).

    [16] Q. M. Chen, H. Zhou, S. Q. Xu. A route toward high-detectivity and low-cost short-wave infrared photodetection: GeSn/Ge multiple-quantum-well photodetectors with a dielectric nanohole array metasurface. ACS Nano, 17, 12151-12159(2023).

    [17] , H. Kumar, A. K. Pandey. Si-based high responsivity germanium-tin MQW p-i-n photodetectors for broadband applications. 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), 1-3(2022).

    [18] H. B. Wang, G. Zhang, Y. Chen. Monolithic waveguide group IV multiple-quantum-well photodetectors and modulators on 300-mm Si substrates for 2-μm wavelength optoelectronic integrated circuit. IEEE Trans. Electron Devices, 69, 7161-7166(2022).

    [19] B. J. Huang, J. H. Lin, H. H. Cheng. GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms. Opt. Lett., 43, 1215-1218(2018).

    [20] C. H. Tsai, B. J. Huang, R. A. Soref. GeSn resonant-cavity-enhanced photodetectors for efficient photodetection at the 2 μm wavelength band. Opt. Lett., 45, 1463-1466(2020).

    [21] S. Q. Xu, W. Wang, Y. C. Huang. High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Opt. Express, 27, 5798-5813(2019).

    [22] Y. J. Chen, X. Y. Zhao, J. Huang. Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes. Opt. Express, 26, 35034-35045(2018).

    [23] B. Tossoun, J. Z. Zang, S. J. Addamane. InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength. J. Lightwave Technol., 36, 4981-4987(2018).

    [24] Y. J. Chen, Z. Y. Xie, J. Huang. High-speed uni-traveling carrier photodiode for 2 μm wavelength application. Optica, 6, 884-889(2019).

    [25] A. Joshi, D. Becker. High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength. IEEE Photon. Technol. Lett., 20, 551-553(2008).

    [26] A. Joshi, S. Datta. High-speed, large-area, p-i-n InGaAs photodiode linear array at 2 μm wavelength. Proc. SPIE, 8353, 83533D(2012).

    [27] J. J. Ackert, D. J. Thomson, L. Shen. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photonics, 9, 393-396(2015).

    [28] J. S. Guo, J. Li, C. Y. Liu. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl., 9, 29(2020).

    [29] Y. Dong, W. Wang, S. Xu. Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth. Opt. Express, 25, 15818-15827(2017).

    [30] H. Zhou, S. Xu, Y. Lin. High-efficiency GeSn/Ge multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 μm. Opt. Express, 28, 10280-10293(2020).

    [31] M. R. M. Atalla, S. Assali, S. Koelling. High-bandwidth extended-SWIR GeSn photodetectors on silicon achieving ultrafast broadband spectroscopic response. ACS Photon., 9, 1425-1433(2022).

    Jinlai Cui, Jun Zheng, Yupeng Zhu, Xiangquan Liu, Yiyang Wu, Qinxing Huang, Yazhou Yang, Zhipeng Liu, Zhi Liu, Yuhua Zuo, Buwen Cheng, "High-speed GeSn resonance cavity enhanced photodetectors for a 50 Gbps Si-based 2 μm band communication system," Photonics Res. 12, 767 (2024)
    Download Citation