• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011006 (2021)
Hengbin Zhang1 and Jun Xie1、2、*
Author Affiliations
  • 1Qian Xuesen Laboratory of Space Technology, Beijing 100094, China
  • 2China Academy of Space Technology,Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202158.1011006 Cite this Article Set citation alerts
    Hengbin Zhang, Jun Xie. Temporal Resolution of Superconducting Nanowire Single Photon Detection[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011006 Copy Citation Text show less
    References

    [1] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications[J]. Superconductor Science and Technology, 25, 063001(2012). http://arxiv.org/abs/1204.5560v1

    [2] You L X. Recent progress on superconducting nanowire single photon detector[J]. Scientia Sinica (Informationis), 44, 370-388(2014).

    [3] Engel A, Renema J J, Il’in K et al. Detection mechanism of superconducting nanowire single-photon detectors[J]. Superconductor Science and Technology, 28, 114003(2015).

    [4] Zhang H B, Xiao L, Luo B C et al. The potential and challenges of time-resolved single-photon detection based on current-carrying superconducting nanowires[J]. Journal of Physics D: Applied Physics, 53, 013001(2020). http://iopscience.iop.org/article/10.1088/1361-6463/ab4146

    [5] Dauler E A, Grein M E, Kerman A J et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance[J]. Optical Engineering, 53, 081907(2014).

    [6] He Y F, Zhao Y K, Li C Y et al. Measurement-device-independent quantum key distribution of finite detector's dead time in heralded pair coherent state[J]. Acta Optica Sinica, 40, 2427001(2020).

    [7] Liu H, Lu L, Zhu Y et al. Influence of intensity scintillation on jitter in time transfer by space laser link[J]. Acta Optica Sinica, 39, 0412007(2019).

    [8] Hofherr M, Arndt M, Il'in K et al. Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors[J]. IEEE Transactions on Applied Superconductivity, 23, 2501205(2013). http://ieeexplore.ieee.org/document/6459543

    [9] Zhang J, Slysz W, Verevkin A et al. Response time characterization of NbN superconducting single-photon detectors[J]. IEEE Transactions on Applied Superconductivity, 13, 180-183(2003).

    [10] Marsili F, Stevens M J, Kozorezov A et al. Hotspot relaxation dynamics in a current-carrying superconductor[J]. Physical Review B, 93, 094518(2016). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.094518

    [11] Ferrari S, Kovalyuk V, Hartmann W et al. Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors[J]. Optics Express, 25, 8739-8750(2017). http://europepmc.org/abstract/MED/28437951

    [12] Zhang X F, Lita A E, Sidorova M et al. Superconducting fluctuations and characteristic time scales in amorphous WSi[J]. Physical Review B, 97, 174502(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=433b57bb378c4e42aa1522bdebb2167e

    [13] Il'in K S, Lindgren M, Currie M et al. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors[J]. Applied Physics Letters, 76, 2752(2000).

    [14] Kerman A J, Dauler E A, Keicher W E et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters[J]. Applied Physics Letters, 88, 111116(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4818938

    [15] He Y H, Lü C L, Zhang W J et al. Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection[J]. Chinese Physics B, 24, 060303(2015).

    [16] Semenov A D, Nebosis R S, Gousev Y P et al. Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model[J]. Physical Review B, 52, 581-590(1995). http://prb.aps.org/abstract/PRB/v52/i1/p581_1

    [17] Lindgren M, Currie M, Williams C et al. Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photodetectors[J]. Applied Physics Letters, 74, 853-855(1999).

    [18] McCaughan A N, Berggren K K. A superconducting-nanowire three-terminal electrothermal device[J]. Nano Letters, 14, 5748-5753(2014). http://europepmc.org/abstract/med/25233488

    [19] Semenov A D, Gol’tsman G N, Korneev A A. Quantum detection by current carrying superconducting film[J]. Physica C: Superconductivity, 351, 349-356(2001). http://www.sciencedirect.com/science/article/pii/S0921453400016373

    [20] Engel A, Schilling A. Numerical analysis of detection-mechanism models of superconducting nanowire single-photon detector[J]. Journal of Applied Physics, 114, 214501(2013). http://www.researchgate.net/publication/260552103_Numerical_analysis_of_detection-mechanism_models_of_superconducting_nanowire_single-photon_detector

    [21] Engel A, Lonsky J, Zhang X F et al. Detection mechanism in SNSPD: numerical results of a conceptually simple, yet powerful detection model[J]. IEEE Transactions on Applied Superconductivity, 25, 1-7(2015). http://ieeexplore.ieee.org/document/6960053

    [22] Wu H, Gu C, Cheng Y H et al. Vortex-crossing-induced timing jitter of superconducting nanowire single-photon detectors[C]. //Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California. Washington, D.C.: OSA, FF1E.5(2017).

    [23] Jahani S, Yang L P, Tepole A B et al. Probabilistic vortex crossing criterion for superconducting nanowire single-photon detectors[J]. Journal of Applied Physics, 127, 143101(2020). http://www.researchgate.net/publication/341059572_Probabilistic_vortex_crossing_criterion_for_superconducting_nanowire_single-photon_detectors

    [24] Zotova A N, Vodolazov D Y. Photon detection by current-carrying superconducting film: a time-dependent Ginzburg-Landau approach[J]. Physical Review B, 85, 024509(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=ec4960e1d58cc3d5393ccf0413cce712

    [25] Vodolazov D Y. Minimal timing jitter in superconducting nanowire single-photon detectors[J]. Physical Review Applied, 11, 014016(2019). http://www.researchgate.net/publication/330264989_Minimal_Timing_Jitter_in_Superconducting_Nanowire_Single-Photon_Petectors

    [26] Vodolazov D. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach[J]. Physical Review Applied, 7, 034014(2017). http://arxiv.org/abs/1611.06060

    [27] Kozorezov A G, Lambert C, Marsili F et al. Quasiparticle recombination in hotspots in superconducting current-carrying nanowires[J]. Physical Review B, 92, 064504(2015). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiBiZTZjMGZjODlmNjU0MDQ0Mzc2M2YzMWVhZWQ3ZTc5MRoINmc0ODd3N3A%3D

    [28] Zhang L, You L, Yang X et al. Hotspot relaxation time of NbN superconducting nanowire single-photon detectors on various substrates[J]. Scientific Reports, 8, 1486(2018).

    [29] Renema J J, Gaudio R, Wang Q et al. Probing the hotspot interaction length in NbN nanowire superconducting single photon detectors[J]. Applied Physics Letters, 110, 233103(2017). http://arxiv.org/abs/1607.03088

    [30] Kardakova A, Finkel M, Morozov D et al. The electron-phonon relaxation time in thin superconducting titanium nitride films[J]. Applied Physics Letters, 103, 252602(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6709324

    [31] Yang J K W, Kerman A J, Dauler E A et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors[J]. IEEE Transactions on Applied Superconductivity, 17, 581-585(2007).

    [32] Long L X, Tian Y C, Guo J H et al. Electrothermal simulation and timing jitter analysis of superconducting NbN nanowire[J]. Cryogenics & Superconductivity, 48, 32-35, 41(2020).

    [33] Suzuki K, Miki S, Shiki S et al. Time resolution improvement of superconducting NbN stripline detectors for time-of-flight mass spectrometry[J]. Applied Physics Express, 1, 031702(2008). http://ci.nii.ac.jp/naid/10025079413

    [34] Sidorova M V, Divochiy A, Vakhtomin Y B et al. Ultrafast superconducting single-photon detector with reduced-size active area coupled to a tapered lensed single-mode fiber[J]. Proceedings of SPIE, 9504, 950408(2015). http://spie.org/x648.xml?product_id=2178131

    [35] Vetter A, Ferrari S, Rath P et al. Cavity-enhanced and ultrafast superconducting single-photon detectors[J]. Nano Letters, 16, 7085-7092(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b03344

    [36] Liu J, Zhang L Q, Jiang Z N et al. Superconducting nanowire single photon detector with optical cavity[J]. Chinese Physics Letters, 33, 088502(2016).

    [37] Smirnov K V, Divochiy A V, Vakhtomin Y B et al. Rise time of voltage pulses in NbN superconducting single photon detectors[J]. Applied Physics Letters, 109, 052601(2016). http://scitation.aip.org/content/aip/journal/apl/109/5/10.1063/1.4960533

    [38] Annunziata A J, Quaranta O, Santavicca D F et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors[J]. Journal of Applied Physics, 108, 084507(2010). http://scitation.aip.org/content/aip/journal/jap/108/8/10.1063/1.3498809

    [39] Akhlaghi M K, Majedi A H. Gated mode superconducting nanowire single photon detectors[J]. Optics Express, 20, 1608-1616(2012). http://www.ncbi.nlm.nih.gov/pubmed/22274503

    [40] Zhang L B, Zhang S, Tao X et al. Quasi-gated superconducting nanowire single-photon detector[J]. IEEE Transactions on Applied Superconductivity, 27, 1-6(2017).

    [41] Ravindran P, Cheng R S, Tang H et al. Active quenching of superconducting nanowire single photon detectors[J]. Optics Express, 28, 4099-4114(2020). http://www.researchgate.net/publication/338418219_Active_quenching_of_superconducting_nanowire_single_photon_detectors

    [42] Liu D K, Chen S J, You L X et al. Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias[J]. Applied Physics Express, 5, 125202(2012).

    [43] You L X, Yang X Y, He Y H et al. Jitter analysis of a superconducting nanowire single photon detector[J]. AIP Advances, 3, 072135(2013). http://www.oalib.com/paper/3749148

    [44] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020). http://www.nature.com/articles/s41566-020-0589-x

    [45] Zhang H B, Liu J K, Guo J H et al. Photon energy-dependent timing jitter and spectrum resolution research based on time-resolved SNSPDs[J]. Optics Express, 28, 16696-16707(2020). http://www.researchgate.net/publication/341332493_Photon_energy-dependent_timing_jitter_and_spectrum_resolution_research_based_on_time-resolved_SNSPDs

    [46] Zhang H B, Tian Y C, Guo J H et al. Origins of the wavelength dependent timing jitter in superconducting nanowire single photon detector[J]. Proceedings of SPIE, 11354, 113541S(2020). http://www.researchgate.net/publication/340370777_Origins_of_the_wavelength_dependent_timing_jitter_in_superconducting_nanowire_single_photon_detector

    [47] Pearlman A, Cross A, Slysz W et al. Gigahertz counting rates of NbN single-photon detectors for quantum communications[J]. IEEE Transactions on Applied Superconductivity, 15, 579-582(2005). http://ieeexplore.ieee.org/document/1439704

    [48] Guo J H, Tian Y C, Long L X et al. Origin and mechanism of the wavelength-dependent timing jitter in superconducting nanowire[J]. Journal of Nanophotonics, 14, 046012(2020). http://www.researchgate.net/publication/347207479_Origin_and_mechanism_of_the_wavelength-dependent_timing_jitter_in_superconducting_nanowire

    [49] Najafi F, Marsili F, Dauler E et al. Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors[J]. Applied Physics Letters, 100, 152602(2012). http://scitation.aip.org/content/aip/journal/apl/100/15/10.1063/1.3703588

    [50] Calandri N, Zhao Q Y, Zhu D et al. Superconducting nanowire detector jitter limited by detector geometry[J]. Applied Physics Letters, 109, 152601(2016). http://scitation.aip.org/content/aip/journal/apl/109/15/10.1063/1.4963158

    [51] Berdiyorov G R, Miloševiĉ M V, Peeters F M. Spatially dependent sensitivity of superconducting meanders as single-photon detectors[J]. Applied Physics Letters, 100, 262603(2012). http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4731627

    [52] Sidorova M, Semenov A, Hübers H W et al. Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires[J]. Physical Review B, 96, 184504(2017).

    [53] Sidorova M, Semenov A, Hübers H W et al. Timing jitter in photon detection by straight superconducting nanowires: effect of magnetic field and photon flux[J]. Physical Review B, 98, 134504(2018). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.134504

    [54] Ejrnaes M, Casaburi A, Cristiano R et al. Timing jitter of cascade switch superconducting nanowire single photon detectors[J]. Applied Physics Letters, 95, 132503(2009). http://scitation.aip.org/content/aip/journal/apl/95/13/10.1063/1.3237172

    [55] Tarkhov M, Claudon J, Poizat J P et al. Ultrafast reset time of superconducting single photon detectors[J]. Applied Physics Letters, 92, 241112(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4833292

    [56] Zhao Q, McCaughan A N, Dane A E et al. Eight-fold signal amplification of a superconducting nanowire single-photon detector using a multiple-avalanche architecture[J]. Optics Express, 22, 24574-24581(2014).

    [57] Miki S, Miyajima S, Yabuno M et al. Superconducting coincidence photon detector with short timing jitter[J]. Applied Physics Letters, 112, 262601(2018). http://www.researchgate.net/publication/326001207_Superconducting_coincidence_photon_detector_with_short_timing_jitter

    [58] Kerman A J, Rosenberg D, Molnar R J et al. Readout of superconducting nanowire single-photon detectors at high count rates[J]. Journal of Applied Physics, 113, 144511(2013). http://scitation.aip.org/content/aip/journal/jap/113/14/10.1063/1.4799397

    [59] Gaudio R, Op't Hoog K P M, Zhou Z et al. Inhomogeneous critical current in nanowire superconducting single-photon detectors[J]. Applied Physics Letters, 105, 222602(2014).

    [60] Kerman A J, Dauler E A, Yang J K W et al. Constriction-limited detection efficiency of superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 90, 101110(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4825424

    [61] Zotova A N. The contribution of bends and constrictions of a superconducting film to the photon detection by a single-photon superconducting detector[J]. Journal of Experimental and Theoretical Physics, 122, 818-822(2016).

    [62] Hortensius H L, Driessen E F C, Klapwijk T M. Possible indications of electronic inhomogeneities in superconducting nanowire detectors[J]. IEEE Transactions on Applied Superconductivity, 23, 2200705(2013).

    [63] O’Connor J A, Tanner M G, Natarajan C M et al. Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector[J]. Applied Physics Letters, 98, 201116(2011). http://scitation.aip.org/content/aip/journal/apl/98/20/10.1063/1.3581054

    [64] Cheng Y H, Gu C, Hu X L. Inhomogeneity-induced timing jitter of superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 111, 062604(2017).

    [65] Kozorezov A G, Lambert C, Marsili F et al. Fano fluctuations in superconducting-nanowire single-photon detectors[J]. Physical Review B, 96, 054507(2017). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.054507

    [66] Zhang L, You L X, Liu D K et al. Characterization of superconducting nanowire single-photon detector with artificial constrictions[J]. AIP Advances, 4, 067114(2014). http://scitation.aip.org/content/aip/journal/adva/4/6/10.1063/1.4881981

    [67] Caloz M, Korzh B, Timoney N et al. Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector[J]. Applied Physics Letters, 110, 083106(2017). http://arxiv.org/abs/1611.08238

    [68] Allmaras J P, Kozorezov A G, Korzh B A et al. Intrinsic timing jitter and latency in superconducting nanowire single-photon detectors[J]. Physical Review Applied, 11, 034062(2019). http://www.researchgate.net/publication/332004244_Intrinsic_Timing_Jitter_and_Latency_in_Superconducting_Nanowire_Single-photon_Detectors

    [69] Stevens M J, Hadfield R H, Gerrits T et al. Infrared wavelength-dependent optical characterization of NbN nanowire superconducting single-photon detectors[J]. Journal of Modern Optics, 56, 358-363(2009). http://www.tandfonline.com/doi/abs/10.1080/09500340802322426

    [70] Yang L P, Tang H X, Jacob Z. Concept of quantum timing jitter and non-Markovian limits in single-photon detection[J]. Physical Review A, 97, 013833(2018).

    [71] Casaburi A, Ejrnaes M, Cristiano R. 1 mm ultrafast superconducting stripline molecule detector[J]. Applied Physics Letters, 95, 172508(2009). http://scitation.aip.org/content/aip/journal/apl/95/17/10.1063/1.3256220

    [72] Casaburi A, Ejrnaes M, Zen N et al. Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis[J]. Applied Physics Letters, 98, 023702(2011). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5688127

    [73] Suzuki K, Shiki S, Ukibe M et al. Hot-spot detection model in superconducting nano-stripline detector for keV ions[J]. Applied Physics Express, 4, 083101(2011).

    [74] de Lara D P, Ejrnaes M, Casaburi A et al. Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins)[J]. Journal of Low Temperature Physics, 151, 771-776(2008). http://link.springer.com/article/10.1007/s10909-008-9745-2

    [75] Inderbitzin K, Engel A, Schilling A et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft X-rays[J]. Applied Physics Letters, 101, 162601(2012). http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?arnumber=6331315

    [76] Inderbitzin K, Engel A, Schilling A. Soft X-ray single-photon detection with superconducting tantalum nitride and niobium nanowires[J]. IEEE Transactions on Applied Superconductivity, 23, 2200505(2013). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6384686

    [77] Zhang X F, Wang Q, Schilling A. Superconducting single X-ray photon detector based on W0.8Si0.2[J]. AIP Advances, 6, 115104(2016). http://scitation.aip.org/content/aip/journal/adva/6/11/10.1063/1.4967278

    [78] Zhang H B, Guo S Y, Wang J G et al. Temporal resolution research based on X-ray superconducting nanowire single-photon detectors[J]. Proceedings of SPIE, 11554, 115540M(2020). http://www.researchgate.net/publication/346159678_Temporal_resolution_research_based_on_x-ray_superconducting_nanowire_single-photon_detectors

    [79] Gao Y D, Wang H L, You S H et al. X-ray pulsar signal denoising based on two-parameter threshold function and multi-layer threshold[J]. Acta Optica Sinica, 39, 1204001(2019).

    [80] Xue L, Zhai D S, Li Y Q et al. Ranging capability analysis for laser ranging system using superconducting nanowire detectors[J]. Acta Optica Sinica, 36, 0304001(2016).

    Hengbin Zhang, Jun Xie. Temporal Resolution of Superconducting Nanowire Single Photon Detection[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011006
    Download Citation