[1] Sharma B, Frontiera R R, Henry A I et al. SERS: materials, applications, and the future[J]. Materials Today, 15, 16-25(2012).
[2] Pang S, Yang T X, He L L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 85, 73-82(2016).
[3] Quan Y N, Yao J C, Yang S et al. Detect, remove and re-use: sensing and degradation pesticides via 3D tilted ZMRs/Ag arrays[J]. Journal of Hazardous Materials, 391, 122222(2020).
[4] Chen Y, Yan X, Zhang X et al. Surface-enhanced Raman spectroscopy quantitative analysis of polycyclic aromatic hydrocarbons based on support vector machine algorithm[J]. Chinese Journal of Lasers, 46, 0311005(2019).
[5] Qi Y F, Liu Y H, Liu D M. Research progress on application of Raman spectroscopy in tumor diagnosis[J]. Laser & Optoelectronics Progress, 57, 220001(2020).
[6] Dong D S, Shi Q Q, Sikdar D et al. Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration[J]. Nanoscale Horizons, 4, 940-946(2019).
[7] Nie B B, Luo Y Y, Shi J P et al. Bowl-like Pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and Actuators B: Chemical, 301, 127087(2019).
[8] Zhou X, Liu G Q, Zhang H W et al. Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocy clohexane pesticides via efficient enrichment[J]. Journal of Hazardous Materials, 368, 429-435(2019).
[9] Xin K, Shi X F, Zhang X et al. Aggregation of gold nanoparticles based on photothermal effect and its application in surface-enhanced Raman scattering[J]. Acta Optica Sinica, 40, 1930001(2020).
[10] Li X X, Shang Y, Lin J et al. Temperature-induced stacking to create Cu2O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering[J]. Advanced Functional Materials, 28, 1801868(2018).
[11] Zhao X H, Deng M, Rao G F et al. High-performance SERS substrate based on hierarchical 3D Cu nanocrystals with efficient morphology control[J]. Small, 14, 1802477(2018).
[12] Wang J X, Hong R J, Tao C X et al. Fabrication and surface enhanced Raman spectroscopy of nano-Cu2O thin films[J]. Acta Optica Sinica, 37, 0816004(2017).
[13] Yu J, Yang M S, Zhang C et al. Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS[J]. Advanced Materials Interfaces, 5, 1800672(2018).
[14] Yang Z Q, Ma C C, Wang W et al. Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity[J]. Journal of Colloid and Interface Science, 557, 156-167(2019).
[15] Chen L, Zhao Y, Zhang Y J et al. Design of Cu2O-Au composite microstructures for surface-enhanced Raman scattering study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 507, 96-102(2016).
[16] Dat P V, Viet N X. Facile synthesis of novel areca flower like Cu2O nanowire on copper foil for a highly sensitive enzyme-free glucose sensor[J]. Materials Science and Engineering: C, 103, 109758(2019).
[17] Zhang X L, Zhang J, Zhu Y. Microfluidic surface-enhanced Raman scattering experiment using CNTs/AgNPs composite structure[J]. Chinese Journal of Lasers, 46, 1011001(2019).
[18] Long K L, Du D Y, Luo X G et al. Facile synthesis of gold coated copper (II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering[J]. Applied Surface Science, 311, 666-671(2014).
[19] Wang Y D, Zhang M Y, Feng L et al. Tape-imprinted hierarchical lotus seedpod-like arrays for extraordinary surface-enhanced Raman spectroscopy[J]. Small, 15, 1804527(2019).
[20] Yang C X, Qing C, Wang Q J et al. Synthesis of the hybrid CdS/Au flower-like nanomaterials and their SERS application[J]. Sensors and Actuators B: Chemical, 304, 127218(2020).
[22] Yüksel S, Ziegler M, Goerke S et al. Hierarchically-designed 3D flower-like composite nanostructures as an ultrastable, reproducible, and sensitive SERS substrate[J]. ACS Applied Materials & Interfaces, 9, 38854-38862(2017).
[23] Jin B B, He J H, Li J et al. Lotus seedpod inspired SERS substrates: a novel platform consisting of 3D sub-10 nm annular hot spots for ultrasensitive SERS detection[J]. Advanced Optical Materials, 6, 1800056(2018).
[24] Gao Y K, Yang N, You T T et al. Superhydrophobic “wash free” 3D nanoneedle array for rapid, recyclable and sensitive SERS sensing in real environment[J]. Sensors and Actuators B: Chemical, 267, 129-135(2018).
[25] Niu W X, Zhang L, Xu G B. Seed-mediated growth method for high-quality noble metal nanocrystals[J]. Science China Chemistry, 55, 2311-2317(2012).
[26] Xia Y, Gilroy K D, Peng H C et al. Seed-mediated growth of colloidal metal nanocrystals[J]. Angewandte Chemie (International Ed. in English), 56, 60-95(2017).
[27] Lin S, Lin X, Shang Y X et al. Self-assembly of faceted gold nanocrystals for surface-enhanced Raman scattering application[J]. The Journal of Physical Chemistry C, 123, 24714-24722(2019).
[28] Qu L L, Geng Z Q, Wang W et al. Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants[J]. Journal of Hazardous Materials, 379, 120823(2019).
[29] Peng Q Q, Wang N, Zhu Y et al. Hydrophobic AgNPs: one-step synthesis in aqueous solution and their greatly enhanced performance for SERS detection[J]. Journal of Materials Chemistry C, 7, 10465-10470(2019).
[30] Zhang W, Wen X, Yang S et al. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature[J]. Advanced Materials, 15, 822-825(2003).
[31] le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).
[32] Jiang G H, Wang Z Y, Zong S F et al. Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water[J]. Journal of Hazardous Materials, 408, 124426(2021).
[33] Ekmen E, Bilici M, Turan E et al. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green[J]. Sensors and Actuators B: Chemical, 325, 128787(2020).
[34] Li Z H, Bai J H, Zhang X et al. Facile synthesis of Au nanoparticle-coated Fe3O4 magnetic composite nanospheres and their application in SERS detection of malachite green[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241, 118532(2020).
[35] Liu M, Zhang W D, Lu F F et al. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 7, 526-531(2019).
[36] Hu B X, Sun D W, Pu H B et al. A dynamically optical and highly stable pNIPAM@Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet[J]. Talanta, 218, 121188(2020).
[37] Ouyang L, Yao L, Zhou T H et al. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor[J]. Analytica Chimica Acta, 1027, 83-91(2018).
[38] Yang G H, Fang X J, Jia Q et al. Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish[J]. Microchimica Acta, 187, 1-10(2020).
[39] Dou X M, Zhao L, Li X Q et al. Ag nanoparticles decorated mesh-like MoS2 hierarchical nanostructure fabricated on Ti foil: a highly sensitive SERS substrate for detection of trace malachite green in flowing water[J]. Applied Surface Science, 509, 145331(2020).