• Laser & Optoelectronics Progress
  • Vol. 52, Issue 5, 53002 (2015)
Hu Libing*, Liu Kun, Wang Guishi, Wang Lei, Tan Tu, and Gao Xiaoming
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.053002 Cite this Article Set citation alerts
    Hu Libing, Liu Kun, Wang Guishi, Wang Lei, Tan Tu, Gao Xiaoming. Research on Detecting CO with Quartz Enhanced Photoacoustic Spectroscopy Based on 2.33 μm Distributed Feed Back Laser[J]. Laser & Optoelectronics Progress, 2015, 52(5): 53002 Copy Citation Text show less
    References

    [1] A Rosencwaig. Photoacoustics and Photoacoustic Spectroscopy[M]. New York: Wiley, 1980: 1-309.

    [2] Z Bozkia, A Pognyb, G Szabo. Photoacoustic instruments for practical applications: Present, potentials, and future challenges[J]. Appl Spectrosc Rev, 2011, 46(1): 1-37.

    [3] T Kuusela, J Kauppinen. Photoacoustic gas analysis using interferometric cantilever microphone[J]. Appl Spectrosc Rev, 2007, 42(5): 443-474.

    [4] N Mohamad, P Iovenitti, T Vinay. Effective diaphragm area of spring-supported capacitive MEMS microphone designs [C]. SPIE, 2008, 7268: 726805.

    [5] E L Holthoff, D A Heaps, P M Pellegrino. Development of a MEMS-scale photoacoustic chemical sensor using a quantum cascade laser[J]. IEEE Sens J, 2010, 10(3): 572-577.

    [6] A Rosencwaig. Photoacoustic spectroscopy of solids[J]. Opt Commun, 1973, 7(4) : 305-308.

    [7] A A Kosterev, F K Tittel, D V Serebryakov, et al.. Applications of quartz tuning forks in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76(4): 043105.

    [8] A A Kosterev, Yu A Bakhirkin, R F Curl, et al.. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.

    [9] A A Kosterev, F K Tittel. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. Appl Opt, 2004, 43(33): 6213-6217.

    [10] R Lewicki, G Wysocki, A A Kosterev, et al.. Carbon dioxide and ammonia detection using 2 mm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87(1): 157-162.

    [11] K Liu, J Li, L Wang, et al.. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Appl Phys B, 2009, 94(3): 527-533.

    [12] A A Kosterev, Y A Bakhirkin, F K Tittel, et al.. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92(1): 103-109.

    [13] S Schilt, A A Kosterev, F K Tittel. Performance evaluation of a near infrared QEPAS based ethylene sensor[J]. Appl Phys B, 2009, 95(4): 813-824.

    [14] A A Kosterev, T S Mosely, F K Tittel. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN[J]. Appl Phys B, 2006, 85(2-3): 295-300.

    [15] Zheng Nina, Xie Pinhua, Ling Liuyi, et al.. Detection of atmospheric SO2 and O3 using optical fiber coupling long-path differential optical absorption spectroscopy system with UV light emitting diodes[J]. Acta Optica Sinica, 2013, 33(3): 0301007.

    [16] He Ying, Zhang Yujun, Wang Liming, et al.. Laser technology for CO2 and H2O on-line detection in large region[J]. Chinese J Lasers, 2014, 41(1): 0115003.

    [17] H Yi, K Liu, W Chen, et al.. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartzenhanced photoacoustic spectroscopy[J]. Opt Lett, 2011, 36(4): 481-483.

    [18] Y Ma, R Lewicki, M Razeghi, et al.. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Opt Express, 2013, 21(1): 1008-1019.

    [19] C Bauer, U Willer, R Lewicki, et al.. A mid-infrared QEPAS sensor device for TATP detection[J], J Phys, 2009, 157 (1): 012002.

    [20] K Liu, X Guo, H Yi, et al.. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34(10): 1594-1596.

    [21] H Yi, K Liu, S Sun, et al.. Theoretical analysis of off beam quartz-enhanced photoacoustic spectroscopy trace gas sensor[J]. Opt Commun, 2012, 285(24): 5306-5312.

    [22] H Yi, W Chen, X Guo, et al.. An acoustic model for microresonator in on beam quartz-enhanced photoacoustic spectroscopy [J]. Appl Phys B, 2012, 108(2): 361-367.

    [23] M Jahjah, A Vicet, Y Rouillard. A QEPAS based methane sensor with a 2.35 mm antimonide laser[J]. Appl Phys B, 2012, 106(2): 483-489.

    [24] L Dong, A A Kosterev, D Thomazy, et al.. QEPAS spectrophones: Design, optimization, and performance[J]. Appl Phys B, 2010, 100(3): 627-635.

    [25] K Liu, H Yi, A A Kosterev, et al.. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation[J]. Rev Sci Instrum, 2010, 81(10): 103103.

    [26] A Veres, Z Bozoki, A Mohacsi, et al.. External cavity diode laser based photoacoustic detection of CO2 at 1.43 mm: The effect of molecular relaxation[J]. Appl Spectrosc, 2003, 57(8): 900-905.

    [27] U Burghaus, H Conrad. A molecular beam relaxation spectroscopy study of CO adsorption on Ag(ll0) and Pt(lll) [J]. Surface Sci, 1995, 331-333: 116-120.

    [28] S Schilt, J -P Besson, L Thevenaz. Near-infrared laser photoacoustic detection of methane: The impact of molecular relaxation[J]. Appl Phys B, 2006, 82(2): 319-329.

    [29] Dong Lei, Ma Weiguang, Zhang Lei, et al.. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy[J]. Acta Optica Sinica, 2014, 34(1): 0130002.

    CLP Journals

    [1] Chen Ying, Gao Guangzhen, Cai Tingdong. Detection Technique of Ethylene Based on Photoacoustic Spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 511001

    Hu Libing, Liu Kun, Wang Guishi, Wang Lei, Tan Tu, Gao Xiaoming. Research on Detecting CO with Quartz Enhanced Photoacoustic Spectroscopy Based on 2.33 μm Distributed Feed Back Laser[J]. Laser & Optoelectronics Progress, 2015, 52(5): 53002
    Download Citation