• Chinese Optics Letters
  • Vol. 20, Issue 2, 021408 (2022)
Shengjun Huang1, Yiran Wang2, Jingliang He3, Xiancui Su2、*, and Jie Liu1、**
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 2Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
  • 3State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
  • show less
    DOI: 10.3788/COL202220.021408 Cite this Article Set citation alerts
    Shengjun Huang, Yiran Wang, Jingliang He, Xiancui Su, Jie Liu. Nanosecond and femtosecond lasers based on black arsenic-phosphorus alloys saturable absorber[J]. Chinese Optics Letters, 2022, 20(2): 021408 Copy Citation Text show less
    References

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] Z. Yang, L. Han, Q. Yang, X. Ren, S. Z. U. Din, X. Zhang, J. Leng, J. Zhang, B. Zhang, K. Yang, J. He, C. Li, J. Wang. Two-dimensional tellurium saturable absorber for ultrafast solid-state laser. Chin. Opt. Lett., 19, 031401(2021).

    [3] Q. Hao, C. Wang, W. Liu, X. Liu, J. Liu, H. Zhang. Low-dimensional saturable absorbers for ultrafast photonics in solid-state bulk lasers: status and prospects. Nanophotonics, 9, 2603(2020).

    [4] X. Feng, J. Liu, W. Yang, X. Yu, S. Jiang, T. Ning, J. Liu. Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Opt. Express, 28, 1554(2020).

    [5] T. Tang, F. Zhang, M. Wang, Z. Wang, X. Xu. Two-dimensional tellurene nanosheets as saturable absorber of passively Q-switched Nd:YAG solid-state laser. Chin. Opt. Lett., 18, 041403(2020).

    [6] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett., 16, 020004(2018).

    [7] J. Hong, C. Jin, J. Yuan, Z. Zhang. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater., 29, 1606434(2017).

    [8] A. J. Mannix, B. Kiraly, M. C. Hersam, N. P. Guisinger. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem., 1, 14(2017).

    [9] Q. Fu, X. Bao. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev., 46, 1842(2017).

    [10] C. Tan, X. Cao, X. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. Nam, M. Sindoro, H. Zhang. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 117, 6225(2017).

    [11] Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang, L. Fu. Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater., 7, 1602684(2017).

    [12] G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, J. N. Coleman. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano, 6, 3468(2012).

    [13] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699(2012).

    [14] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res., 48, 56(2015).

    [15] F. Xia, H. Wang, Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [16] X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517(2015).

    [17] J. Qiao, X. Kong, Z. Hu, F. Yang, W. Ji. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475(2014).

    [18] G. Qu, T. Xia, W. Zhou, X. Zhang, H. Zhang, L. Hu, J. Shi, X. F. Yu, G. Jiang. Property–activity relationship of black phosphorus at the nano–bio interface: from molecules to organisms. Chem. Rev., 120, 2288(2020).

    [19] M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [20] Z. He, Y. Zheng, H. Liu, M. Li, H. Lu, H. Zhang, Q. Feng, D. Mao. Passively Q-switched cylindrical vector laser based on a black phosphorus saturable absorber. Chin. Opt. Lett., 17, 020004(2019).

    [21] B. Deng, R. Frisenda, C. Li, X. Chen, A. Castellanos-Gomez, F. Xia. Progress on black phosphorus photonics. Adv. Opt. Mater., 6, 1800365(2018).

    [22] Y. Xue, Z. Xie, Z. Ye, X. Hu, J. Xu, H. Zhang. Enhanced saturable absorption of MoS2 black phosphorus composite in 2 µm passively Q-switched Tm:YAP laser. Chin. Opt. Lett., 16, 020018(2018).

    [23] J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, M. H. Rummeli. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater., 8, 1702093(2018).

    [24] Y. Liu, T. Sun, W. Ma, W. Yu, S. B. Nanjunda, S. Li, Q. Bao. Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett., 16, 020002(2018).

    [25] X. Wang, Z. Wang, Y. Wang, L. Li, G. Yang, J. Li. Watt-level high-power passively Q-switched laser based on a black phosphorus solution saturable absorber. Chin. Opt. Lett., 15, 011402(2017).

    [26] J. O. Island, G. A. Steele, H. S. J. V. Zant, A. Castellanos-Gomez. Environmental instability of few-layer black phosphorus. 2D Mater., 2, 11002(2015).

    [27] B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann. MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy, 29, 46(2016).

    [28] Y. Gong, Z. Liu, A. R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A. L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S. T. Pantelides, S. J. Pennycook, J. Lou, W. Zhou, P. M. Ajayan. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett., 14, 442(2014).

    [29] S. Li, Y. Zhai, X. Zhang, D. R. MacFarlane. Surfactant-free synthesis of graphene-supported PdCu nanocrystals with high alloying degree as highly active catalyst for formic acid electrooxidation. Adv. Mater. Interfaces, 4, 1700227(2017).

    [30] M. L. Parucker, C. E. Da Costa, V. L. Soethe. Development of Ni/h-BN self-lubricating composite powder by high-energy ball milling. Mater. Sci. Forum, 869, 277(2016).

    [31] D. Alfè, M. Pozzo, E. Miniussi, S. Günther, P. Lacovig, S. Lizzit, R. Larciprete, B. S. Burgos, T. O. Menteş, A. Locatelli, A. Baraldi. Fine tuning of graphene-metal adhesion by surface alloying. Sci. Rep., 3, 2430(2013).

    [32] I. I. Shirotani, J. Mikami, T. Adachi, Y. Katayama, K. Tsuji, H. Kawamura, O. Shimomura, T. Nakajima. Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys. Rev. B, 50, 16274(1994).

    [33] B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, C. Zhou. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater., 27, 4423(2015).

    [34] O. Osters, T. Nilges, F. Bachhuber, F. Pielnhofer, R. Weihrich, M. Schöneich, P. Schmidt. Synthesis and identification of metastable compounds: black arsenic-science or fiction?. Angew. Chem. Int. Ed., 51, 2994(2012).

    [35] S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, F. Xia. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett., 18, 3172(2018).

    [36] M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, F. Miao. Room-temperature high detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 3, e1700589(2017).

    [37] M. Amani, E. Regan, J. Bullock, G. H. Ahn, A. Javey. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano., 11, 11724(2017).

    [38] R. Zhou, P. Tang, Y. Chen, S. Chen, C. Zhao, H. Zhang, S. Wen. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber. Appl. Opt., 53, 254(2014).

    [39] H. Zhang, J. He, Z. Wang, J. Hou, B. Zhang, R. Zhao, K. Han, K. Yang, H. Nie, X. Sun. Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber. Opt. Mater. Express, 6, 2328(2016).

    [40] J. Liu, V. Khayrudinov, H. Yang, Y. Sun, B. Matveev, M. Remennyi, K. Yang, T. Haggren, H. Lipsanen, F. Wang, B. Zhang, J. He. InAs-nanowire-based broadband ultrafast optical switch. J. Phys. Chem. Lett., 10, 4429(2019).

    [41] X. Su, Y. Wang, B. Zhang, R. Zhao, K. Yang, J. He, Q. Hu, Z. Jia, X. Tao. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber. Opt. Lett., 41, 1945(2016).

    Data from CrossRef

    [1] Genglin Li, Wenhui Du, Shuo Sun, Qingming Lu, Zhixiang Chen, Hongliang Liu, Yandong Ma, Xiaoli Sun, Yuechen Jia, Feng Chen. 2D layered MSe2 (M = Hf, Ti and Zr) for compact lasers: nonlinear optical properties and GHz lasing. Nanophotonics, 0(2022).

    Shengjun Huang, Yiran Wang, Jingliang He, Xiancui Su, Jie Liu. Nanosecond and femtosecond lasers based on black arsenic-phosphorus alloys saturable absorber[J]. Chinese Optics Letters, 2022, 20(2): 021408
    Download Citation