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In this paper, the high-repetition-rate passively Q-switched (PQS) and the femtosecond continuous-wave mode-locked
(CWML) lasers are successfully obtained with 2D black arsenic-phosphorus (b-AsP) nanosheets as saturable absorber
(SA) at 1 μm for the first time, to the best of our knowledge. The saturable absorption properties and ultrafast carrier
dynamics of the 2D b-AsP SA are explored by Z-scan and pump-probe techniques. Moreover, according to the measurement
of desired nonlinear optical characteristics of the relaxation time of 27 ps and the modulation depth of 7.14%, the PQS and
CWML lasers are demonstrated with the highest repetition rate of 2.26 MHz in the PQS laser and the pulse width of 470 fs in
the CWML laser. The results show 2D b-AsP SA has enormous potential for pulse modulation in solid-state bulk lasers.
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1. Introduction

After the first, to the best of our knowledge, discovery of
graphene in 2004, two-dimensional (2D) nanomaterials have
attracted extensive attention due to the quantum confinement
effect on the unique mechanical, optical, and electronic proper-
ties[1–11]. After graphene, many 2D nanomaterials have sprung
up, like transition metal dichalcogenides (TMDs), topological
insulators, and black phosphorus (BP), covering an extensive
electromagnetic spectral range including insulators, semicon-
ductors, semimetals, and metals[12–14]. Among these 2D nano-
materials, BP has a widely tunable band gap with different layers
from 2.2 eV in monolayer to 0.3 eV in its bulk form, high elec-
tron mobility, and excellently strong in-plane anisotropic physi-
cal properties[15–17]. It has been widely applied in optoelectronic
devices, energy conversion, medicine, and other fields[18–25].
However, BP is easy to oxidize in air, which significantly limits
its further applications[26].
One effective way to improve the properties of 2Dmaterials is

alloying or doping, which has been demonstrated in a variety of
materials like graphene, boron nitride (h-BN), and TMDs[27–31].
In 1994, Shirotani et al. reported the superconducting properties
of the alloys with synthesizing BP and phosphorus-arsenic alloys
firstly, to the best of our knowledge[32]. In 2015, Liu et al.

demonstrated the characteristic of layered 2D black arsenic-
phosphorus (b-AsP), where the layered b-AsP materials were
semiconductors with tunable band gaps from 0.3 eV down to
0.15 eV via tuning the chemical compositions during material
synthesis[33]. Until now, b-AsP has been widely researched in
electronic and optoelectronic devices due to its unique photo-
electric and anisotropic properties and its better air stability
compared with BP[34–37]. Nevertheless, the nonlinear optical
properties of 2D b-AsP have not been reported, especially the
saturable absorption properties applied to solid-state bulk lasers.
In this paper, a high-quality 2D b-AsP saturable absorber (SA)

is elaborated. Meanwhile, the saturable absorption and ultrafast
carrier dynamics properties are explored by the Z-scan and the
pump-probe techniques. Furthermore, the passively Q-switched
(PQS) and the continuous-wave mode-locked (CWML) solid-
state bulk lasers operating at 1.0 μm are achieved based on the
b-AsP SA. The findings illustrate that 2D b-AsP SA could poten-
tially be nonlinear optical modulators in solid-state bulk lasers.

2. Results and Discussion

By using the top-down liquid phase exfoliation (LPE) method,
the 2D b-AsP SA is fabricated. The atomic ratio of As to P in the
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high-purity commercial b-AsP crystals is approximately 41:9
(the corresponding bandgap is approximately 0.16 eV)[33].
The surface morphology and structure of the prepared b-AsP
SA are researched by the Raman spectra and atomic force
microscopy (AFM).
Figure 1(a) presents the unique Raman spectra of b-AsP

nanosheets stimulated by a 532 nm laser at room temperature.
The Raman peaks are constituted by the out-of-plane A1

g mode,
in-plane B2

g mode, and out-of-plane A2
g mode of b-As, which

locate at 223.2, 233.9, and 253.6 cm−1 respectively, while the
out-of-plane A1

g mode, in-plane B2
g mode, and A2

g mode of BP
are located at 350.0, 467.9, and 485.6 cm−1, respectively[33].
Figure 1(b) shows the AFM image, where the dimensions of
the prepared 2D b-AsP nanosheets are 3 μm × 4 μm with
∼4 nm thickness. The corresponding layer number of 2D
b-AsP nanosheets is about 4–5.
The Z-scan and pump-probe techniques are used to charac-

terize the saturable absorption and the ultrafast carrier dynamics
properties of the prepared b-AsP SA. Firstly, the saturable
absorption properties of the b-AsP SA are measured by the
Z-scan technique through using a fiber laser as the measured
light with the repetition rate of 200 kHz and pulse duration
of ∼15 ps[38]. The experimental data is fitted by the following
formula[39]:

T = A × exp

�
−

ΔR
1� F

Fsat

�
, (1)

where T , A, ΔR, F, and Fsat refer to the transmission rate, nor-
malization constant, modulation depth, input fluence, and sat-
uration fluence, respectively. As shown in Fig. 2(a), based on the
measured data, theΔR of the b-AsP SA is simulated to be 7.14 %,
while the Fsat is 5.86 μJ=cm2.
Furthermore, the ultrafast carrier relaxation process of the

prepared b-AsP SA is explored by a non-degenerate pump-
probe technique with a femtosecond resolution. The probe
wavelength and pump wavelength are 1 μm and 800 nm, respec-
tively. The results are shown in Fig. 2(b), in which the experi-
mental data is fitted by an exponential decay function[40]:

ΔT
T0

= A1 � A2 × exp

�
−
t
τ

�
, (2)

where T0, ΔT , A1, A2, and τ refer to the transmittance of the
probe laser beam before pump laser excitation, probe laser

Fig. 1. (a) Raman spectrum of b-AsP nanosheets. (b) AFM image and representative height profile of b-AsP nanosheets.

Fig. 2. (a) Transmittance versus incident optical power intensity of b-AsP SA.
(b) Time-resolved response of b-AsP SA.
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transmission variation after pump laser excitation, relative
amplitudes of the double temporal components, and the
intra-band relaxation time related to electron-electron coupling,
respectively. By fitting the measured data, the τ is determined to
be 27 ps, indicating that the as-prepared b-AsP SA can be
applied for ultrafast photonics devices.
The picosecond relaxation time, small saturation fluence, and

large modulation depth demonstrate that the prepared b-AsP
SA is a slow SA and can be used in the PQS and CWML lasers.
Finally, the saturable absorption properties of the 2D b-AsP SA
are demonstrated by the PQS Nd∶YVO4 and CWML Yb:KYW
lasers. Figure 3(a) shows the experimental setup of PQS laser,
which is a concave-plane cavity with a cavity length of 22 mm.
The pump source with the central wavelength of 808 nm is
focused on a 3mm × 3mm × 10mmNd∶YVO4 crystal (doping
concentrations of 0.3% atomic fraction). The input mirror
(R = 200mm) is high-reflectivity (HR) coated at 0.95–1.1 μm
and anti-reflectivity (AR) coated at 0.75–0.9 μm. Meanwhile,
a transmission of 10% at 1064 nm is used as the output mirror.
By inserting the b-AsP SA into the laser cavity, a stable PQS

laser operation is realized. Figure 3(b) depicts the dependence of
output powers on absorbed pump powers. When the absorbed
pump power is 5 W, a maximum Q-switched output power of
768 mW is acquired. As shown in Fig. 3(c), the emission wave-
length of PQS operation is located at 1064.4 nm. Compared with
the CW operation, the full width at half-maximum (FWHM) is
narrow, and the central wavelength is blue-shifted, which may
be caused by the high insertion loss of the sapphire-based
b-AsP SA.
The variations of the pulse durations and repetition rates ver-

sus the absorbed pump power are described in Fig. 3(d). The
pulse duration decreases from 900 ns to 140 ns, and the pulse

repetition rates increase from 2.26 MHz to 140 kHz. As shown
in Fig. 3(e), the highest pulse energy is 0.36 μJ with the highest
peak power of 7.5 W. Figure 3(f) describes the characteristic
pulse trains and the shortest pulse profiles with different time
scales under the maximum output power:

FsatΔR <
�PTR�2

Fsat;LAeff ,LAeff ,A
=
�PTR�2 ×mσem;Lλ

hc πω2
eff ,L × πω2

eff ,A

, �3�

where TR, P, Aeff ,L, and Aeff ,A refer to round-trip time, laser
power in the laser cavity, and laser mode areas on laser crystal
and SA, respectively. According to the Eq. (3), the result is that
0.42 μJ=cm2 on the left is far less than 17.2 μJ=cm2 on the right.
Therefore, stable CWML lasers can be obtained with the
b-AsP SA.
The setup of CWML laser is demonstrated in Fig. 4(a), a fiber-

coupled 976 nm LD is focused on anNp-cut Yb:KYWwith a size
of 3mm × 3mm × 4mm. In the laser cavity, a Gires–Tournois
interferometer (GTI) mirror with a total of −500 fs2 group delay
dispersion (GDD) per round is used to compensate the normal
GDD. Figure 4(b) indicates that the pulse width is measured by
an autocorrelation and fitted by sech2-pulse shape to be about
470 fs. It is noted that the central wavelength is 1048 nm with
the FWHM of 3.8 nm in Fig. 4(c). Compared with the
Fourier transform limit value of 0.315, the corresponding
time-bandwidth product of 0.448 is slightly larger, indicating
that a slight chirping exists.
A spectrum analyzer records the radio frequency (RF) in

Fig. 4(d). The central peak and signal-to-noise ratio are obvi-
ously located at 41.8 MHz and up to 58 dB under the resolution
bandwidth (RBW) of 1 kHz. The RF spectra show the immacu-
late and stable CWML operation.

Fig. 3. (a) Experimental setup of PQS. (b) The ratio of output powers to absorbed pump powers under the CW and PQS operations. (c) The emission wavelength of
the CW and PQS lasers. (d) Pulse durations and repetition rates versus absorbed pump powers. (e) Pulse energy and peak power versus absorbed pump power.
(f) The pulse trains and the shortest pulse profiles with different time scales.
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The output laser pulse trains with different time scales are
presented in Fig. 4(e), which can remain stable over 24 h in
the stability test. Compared with the BP SA applied on the
solid-state CWML laser in the previous work[41], although the
pulse width of our b-AsP SA is relatively wide, it can still work
normally after a month of resting in air, demonstrating the
excellent air stability of our sample.

3. Conclusions

In conclusion, based on the prepared high-quality b-AsP SA,
this paper explores the ultrafast carrier dynamics and saturable

absorption properties. Furthermore, saturable absorption prop-
erties are experimentally demonstrated by the PQS and CWML
lasers. The results show that the highest repetition rate of the
PQS laser is 2.26 MHz, and the pulse duration of the CWML
laser is 470 fs, demonstrating that b-AsP SA could be an excel-
lent nonlinear optical modulator for pulse modulation in solid-
state bulk lasers.
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Fig. 4. (a) Experimental setup of CWML laser. (b) CWML laser spectrum. (c) Autocorrelation trace. (d) The frequency spectrum with a wide and narrow span.
(e) Pulse trains at the maximum pump power.
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