• Acta Optica Sinica
  • Vol. 31, Issue 4, 419001 (2011)
Cao Wenhua1、*, Xu Ping1, and Liu Songhao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201131.0419001 Cite this Article Set citation alerts
    Cao Wenhua, Xu Ping, Liu Songhao. Soliton-Effect Pulse Compression in a Dispersion-Decreasing Fiber-Based Mach-Zehnder Interferometer[J]. Acta Optica Sinica, 2011, 31(4): 419001 Copy Citation Text show less
    References

    [1] H. Weber, R. Ludwig, S. Ferber et al.. Ultrahigh-speed OTDM-transmission technology [J]. J. Lightwave Technol., 2006, 24(12): 4616~4627

    [2] S. Arahira, Y. Ogawa. 160-Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM [J]. IEEE Photon. Technol. Lett., 2005, 17(5): 992~994

    [3] D. A. Chestnut, J. R. Taylor. Compact, synchronously diode-pumped tunable fiber Raman source of subpicosecond solitons around 1.6 μm [J]. Opt. Lett., 2004, 29(3): 262~264

    [4] F. Tauser, F. Adler, A. Leitenstorfer. Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source [J]. Opt. Lett., 2004, 29(5): 516~518

    [5] Zhong Shan, Wu Jian, Lou Caiyun et al.. Study on dechirping of pulses from gain-switched semiconductor laser [J]. Chinese J. Semiconductors, 1997, 18(10): 741~747

    [6] Wu Jian, Zhang Fan, Zuo Peng et al.. Study on optimal operating condition of gain-switched semiconductor laser diode [J]. Chinese J . Lasers, 2003, 30(1): 12~16

    [7] P. M. Anandarajah, C. Guignard, A. Clarke et al.. Optimized pulse source employing an externally injected gain-switched laser diode in conjunction with a nonlinearly chirped grating [J]. IEEE J. Selected Topics Quant. Electron., 2006, 12(2): 255~264

    [8] R. Maher, P. M. Anandarajah, L. P. Barry et al.. Complete performance analysis of a 3.5 ps pulse source consisting of a gain-switched laser diode followed by a non-linearly chirped grating [C]. In Digest of the Conference on Quantum Electronics and Laser Science, OSA / CLEO/QELS 2008, San Jose, CA, USA, May 2008: 1~2

    [9] Jia Dongfang, Tan Bin, Wang Zhaoying et al.. Study of soliton pulse with small pedestal based on adiabatic soliton compression effects [J]. Acta Optica Sinica, 2006, 26(2): 166~170

    [10] K. R. Tamura, M. Nakazawa. Femtosecond soliton generation over a 32 nm wavelength range using a dispersion-flattened dispersion-decreasing fiber [J]. IEEE Photon. Technol. Lett., 1999, 11(3): 319~321

    [11] I. Morohashi, T. Sakamoto, H. Sotobayashi et al.. Widely repetition-tunable 200 fs pulse source using a Mach-Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber [J]. Opt. Lett., 2008, 33(11): 1192~1194

    [12] I. Morohashi, T. Sakamoto, H. Sotobayashi et al.. Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber [J]. Opt. Lett., 2009, 34(15): 2297~2299

    [13] M. D. Pelusi, H. F. Liu. Higher order soliton pulse compression in dispersion-decreasing optical fibers [J]. IEEE J. Quant. Electron., 1997, 33(8): 1430~1439

    [14] S. V. Chernikov, D. J. Richardson, R. I. Laming et al.. 70 Gb/s fiber based source of fundamental solitons at 1550 nm [J]. Electron. Lett., 1992, 28(13): 1210~1212

    [15] A. V. Shipulin, D. G. Fursa, E. A. Golovchenko et al.. High repetition rate cw fundamental soliton generation using multisoliton pulse compression in a varying dispersion fiber [J]. Electron. Lett., 1993, 29(16): 1401~1403

    [16] A. V. Shipulin, E. M. Dianov, D. J. Richardson et al.. 40 GHz soliton train generation through multisoliton pulse propagation in a dispersion varying optical fiber circuit [J]. IEEE Photon. Technol. Lett., 1994, 6(11): 1380~1382

    [17] M. D. Pelusi, Y. Matsui, A. Suzuki. Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror [J]. IEEE J. Quant. Electron., 1999, 35(6): 867~874

    [18] P. K. A. Wai, W. H. Cao. Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber [J]. J. Opt. Soc. Am. B, 2003, 20(6): 1346~1355

    [19] J. H. Lee, T. Kogure, D. Richardson. Wavelength tunable 10-GHz 3-ps pulse source using a dispersion decreasing fiber-based nonlinear optical loop mirror [J]. IEEE J. Sel. Top. Quant. Electron., 2004, 10(1): 181~185

    [20] Liang Mantang, Cao Wenhua, Zhou Jiaqing. DDF-MZI-based higher-order soliton pulse compression [J]. Study on Optical Communications, 2009, 155(5): 37~39

    [21] B. K. Nayar, N. Finlayson, N. J. Doran et al.. All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer [J]. Opt. Lett., 1991, 16(6): 408~410

    [22] P. Elango, J. W. Arkwright, P. L. Chu et al.. Low-power all-optical broad-band switching device using ytterbium-doped fiber [J]. IEEE Photon. Technol. Lett., 1996, 8(8): 1032~1034

    [23] J. E. Heebner, R. W. Boyd. Enhanced all-optical switching by use of a nonlinear fiber ring resonator [J]. Opt. Lett., 1999, 24(12): 847~849

    [24] J. Li, L. Li, L. Jin et al.. All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator [J]. Opt. Commun., 2006, 260(1): 318~323

    [25] Cao Wenhua, Liu Songhao. Amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror. II. effects of loop and input pulse characteristics [J]. Acta Optica Sinica, 2004, 24(9): 1253~1258

    [26] G. P. Agrawal. Nonlinear Fiber Optics [M]. 4th ed., Singapore: Academic Press, 2009

    [27] Qu Kenan, Zhang Weigang, Liu Zhuolin et al.. Dispersion compensation in ultra-short optical pulse compressing system and transmitting system. [J]. Chinese J . Lasers, 2010, 37(2): 449~453

    Cao Wenhua, Xu Ping, Liu Songhao. Soliton-Effect Pulse Compression in a Dispersion-Decreasing Fiber-Based Mach-Zehnder Interferometer[J]. Acta Optica Sinica, 2011, 31(4): 419001
    Download Citation