• Infrared and Laser Engineering
  • Vol. 48, Issue 7, 704002 (2019)
Chen Xi1、2, Hu Yihua1、2, Gu Youlin1、2, Zhao Xinying1、2, and Wang Xinyu1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0704002 Cite this Article
    Chen Xi, Hu Yihua, Gu Youlin, Zhao Xinying, Wang Xinyu. Extinction characteristics of biological aggregated particles in the far infrared band[J]. Infrared and Laser Engineering, 2019, 48(7): 704002 Copy Citation Text show less
    References

    [1] Gu Youlin, Hu Yihua, Chen Xi, et al. Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material[J]. Optics Communications, 2018.

    [2] Wang Peng, Liu Hongxia, Zhao Yizheng, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band[J]. Applied Spectroscopy, 2016, 70(9): 1456-1463.

    [3] Tuminello P S, Arakawa E T, Khare B N ,et al. Optical properties of Bacillus subtilis spores from 0.2-2.5 μm[J]. Applied Optics, 1957, 36(3): 2818-2824.

    [4] KFA R, Billing E. The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurement[J]. Journal of General Microbiology, 1997, 16(2): 418-525.

    [5] Sun Dujuan, Hu Yihua, Wang Yong, et al. Determination and model construction of microbes′ complex refractive index in far infrared band[J]. Acta Physica Sinica, 2013, 62(9): 094218. (in Chinese)

    [6] Chicea D, Turcu I. RWMCS-An alternative random walk Monte Carlo code to simulate light scattering in bioligical suspensions[J]. Optik-International Journal for Light and Electron Optics, 2007, 118(5): 232-236.

    [7] Gu Youlin, Hu Yihua, Chen Xi, et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers[J]. Optics Express, 2018, 26(12): 15842-15850.

    [8] Gu Youlin, Wang Cheng, Yang Li, et al. Infrared extinction before and after aspergillus niger spores inactivation[J]. Infrared and Laser Engineering, 2015, 44(1): 36-41. (in Chinese)

    [9] Li Hui, Xie Shusen, Lin Lei, et al. A new model of the light scattering in biological tissue for visible and near infrared region[J]. Acta Optica Sinica, 1999, 19(12):1661-1666. (in Chinese)

    [10] Gurton K P, Ligon D A, Kvavilashvili R. Measured infrared spectral extinction for aerosolized Bacillus subtilis var. Niger endospores from 3 to 13 μm[J]. Applied Optics, 2001, 40(25): 4444.

    [11] Gu Youlin, Cao Guanghua, Hu Yihua, et al. Measurement of ultraviolet and Infrared composite extinction performance of biological materials[J]. Infrared and Laser Engineering, 2018, 47(3): 0321003. (in Chinese)

    [12] Drezek R, Dunn A, Kortum R. A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges[J]. Optics Express, 2000, 6(7): 147.

    [13] Kalashnikov M, Choi W, Hunter M, et al. Assessing the contribution of cell body and intracellular organelles to the backward light scattering[J]. Optics Express, 2012, 20(2): 816.

    [14] Bronk B V, Reinisch L. Variability of steady-state bacterial fluorescence with respect to growth conditions [J]. Applied Spectroscopy, 1993, 47(4): 436-440.

    [15] Sun Dujuan, Hu Yihua, Wang Yong, et al. Sub-microstructures′ influences on cell′s scattering prosperities [J]. Acta Photonica Sinica, 2013, 42(6): 710-714. (in Chinese)

    [16] Feng Chunxia, Huang Lihua, Zhou Guangchao, et al. Computation and analysis of light scattering by monodisperse biological aerosols[J]. Chinese Journal of Lasers, 2010, 37(10): 2592-2598. (in Chinese)

    [17] Zhao Xinying, Hu Yihua, Gu Youlin, et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 2015, 35(6): 0616001. (in Chinese)

    [18] Lucarini V, Saarinen J J, PeiponenK E, et al. KramersKronig Relations in Optical Meterials Research [M]. Berlin, Heidelberg: Springer-Verlag, 2005: 9-25.

    [19] Gu Youlin, Hu Yihua, Chen Xi, et al. Determination of infrared complex refractive index of microbial materials[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 217: 305-314.

    [20] Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters[J]. Chemical Engineering Science, 2004, 59(21): 4401-4413.

    [21] Xie Yunxia, Luo Wenfeng, Li Houqiang. Fractal characteristic of atmospheric particulate matters[J]. World Sci-Tech R & D, 2004, 26(6): 24-29. (in Chinese)

    [22] Huang Chaojun, Wu Zhensen, Liu Yafeng, et al. Effect of porosity on optical properties of aerosol aggregate particals[J]. Acta Optica Sinica, 2013, 33(1): 0129001. (in Chinese)

    [23] Draine B T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophysical Journal, 1988, 333(333): 848-872.

    [24] Li Le, Hu Yihua, Gu Youlin, et al. Infrared extinction performance of Aspergillus niger spores[J]. Infrared and Laser Engineering, 2014, 43(7): 2175-2179. (in Chinese)

    Chen Xi, Hu Yihua, Gu Youlin, Zhao Xinying, Wang Xinyu. Extinction characteristics of biological aggregated particles in the far infrared band[J]. Infrared and Laser Engineering, 2019, 48(7): 704002
    Download Citation