• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220214 (2022)
Zhendong Zhu1, Pingwei Lin1, Zhaoyang Sun2, Benfeng Bai2, and Xueshen Wang1
Author Affiliations
  • 1National Institute of Metrology, Beijing 100029, China
  • 2Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/IRLA20220214 Cite this Article
    Zhendong Zhu, Pingwei Lin, Zhaoyang Sun, Benfeng Bai, Xueshen Wang. Fabrication of silicon nitride-based integrated microcavity optical frequency comb devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220214 Copy Citation Text show less
    References

    [1] T W Hänsch. Nobel lecture: Passion for precision. Rev Mod Phys, 78, 1297-1309(2006).

    [2] T Fortier, E Baumann. 20 years of developments in optical frequency comb technology and applications. Communicat Phys, 2, 1-16(2019).

    [3] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [4] S B Papp, K Beha, P Del’Haye, et al. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [5] M J Thorpe, K D Moll, R J Jones, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 311, 1595-1599(2006).

    [6] P Trocha, M Karpov, D Ganin, et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [7] T Udem, R Holzwarth, T W Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [8] D Pascal, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [9] S Giacomo, J Faist, N Picqué. On-chip mid-infrared and THz frequency combs for spectroscopy. Appl Phys Lett, 114, 150401(2019).

    [10] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator- based optical frequency combs. Science, 332, 555-559(2011).

    [11] J Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photon, 14, 486-491(2020).

    [12] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, 129-162(2018).

    [13] J Hu, J He, J Liu, et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature Communication, 11, 4377(2020).

    [14] J Riemensberger, A Lukashchuk, M Karpov, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [15] Y K Chembo. Kerr optical frequency combs: Theory, applications and perspectives. Nanophoton, 5, 214-230(2016).

    [16] Y Z Zheng, C Z Sun, B Xiong, et al. Integrated gallium nitride nonlinear photonics. Laser & Photon Rev, 16, 2100071(2021).

    [17] X X Xue, X P Zheng, B K Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nature Photon, 13, 616-622(2019).

    [18] Z Z Lu, H J Chen, W Q Wang, et al. Synthesized soliton crystals. Nature Communication, 12, 3179(2021).

    [19] X Y Zhang, Q T Cao, W Zhuo, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface.. Nature Photon, 13, 21-24(2019).

    [20] Y Hu, S L Ding, Y C Qin, et al. Generation of optical frequency comb via giant optomechanical oscillation. Phys Rev Lett, 127, 134301(2021).

    Zhendong Zhu, Pingwei Lin, Zhaoyang Sun, Benfeng Bai, Xueshen Wang. Fabrication of silicon nitride-based integrated microcavity optical frequency comb devices (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220214
    Download Citation