• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071608 (2020)
Tianchang Ouyang1, Guoping Dong1、*, and Jianrong Qiu2
Author Affiliations
  • 1School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP57.071608 Cite this Article Set citation alerts
    Tianchang Ouyang, Guoping Dong, Jianrong Qiu. Research Progress in Solid-State Lasers Based on Rare Earth Ion-doped Oxyfluoride Glass Ceramics[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071608 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Yu X C, Song F, Wang W T et al. Comparison of optical parameters and luminescence between Er 3+/Yb 3+ codoped phosphate glass ceramics and precursor glasses[J]. Journal of Applied Physics, 104, 113105(2008).

    [3] Chen Z, Cui W T, Kang S L et al. Fast-slow red upconversion fluorescence modulation from Ho 3+-doped glass ceramics upon two-wavelength excitation[J]. Advanced Optical Materials, 5, 1600554(2017).

    [4] Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containingYb 3+-Er 3+codoped CaF2 nanocrystals[J]. Nanotechnology, 27, 405203(2016).

    [5] Wei T, Tian Y, Tian C et al. 2.7 μm emissions in Er 3+∶NaYF4 embedded aluminosilicate glass ceramics[J]. Ceramics International, 42, 1332-1338(2016).

    [6] Chen H, Jin C, Huang B et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications[J]. Nature Photonics, 10, 529-533(2016).

    [7] Correa R A, Lopez E A et al. Ultra-high-density spatial Division multiplexing with a few-mode multicore fibre[J]. Nature Photonics, 8, 865-870(2014).

    [8] Wu G B, Fan S H, Zhang Y H et al. 27 μm emission in Er 3+∶CaF2 nanocrystals embedded oxyfluoride glass ceramics[J]. Optics Letters, 38, 3071-3074(2013).

    [9] Samson B N, Tick P A, Borrelli N F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier[J]. Optics Letters, 26, 145-147(2001).

    [10] Fang Z J, Zheng S P, Guan B O et al. Research progress in glass ceramic fibers[J]. Laser & Optoelectronics Progress, 56, 170609(2019).

    [11] Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment[J]. Optics Express, 23, 28258-28263(2015).

    [12] Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications[J]. Applied Optics, 34, 6848-6854(1995).

    [13] Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 7, 44456(2017).

    [14] Kang S L, Huang Z P, Lin W et al. Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores[J]. Journal of Materials Chemistry C, 7, 5155-5162(2019).

    [15] Fan J T, Yuan X Q, Li R H et al. Intense photoluminescence at 2.7 μm in transparent Er 3+∶CaF2-fluorophosphate glass microcomposite[J]. Optics Letters, 36, 4347-4349(2011).

    [16] Xu R R, Tian Y, Hu L L et al. Enhanced emission of 2.7 μm pumped by laser diode from Er 3+/Pr 3+-codoped germanate glasses[J]. Optics Letters, 36, 1173-1175(2011).

    [17] Gorni G, Velázquez J J, Kochanowicz M et al. Tunable upconversion emission in NaLuF4-glass-ceramic fibers doped with Er 3+ and Yb 3+[J]. RSC Advances, 9, 31699-31707(2019).

    [18] Kang S L, Fang Z J, Huang X J et al. Precisely controllable fabrication of Er 3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials[J]. Journal of Materials Chemistry C, 5, 4549-4556(2017).

    [19] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [20] Chiasera A, Dumeige Y, Féron P et al. Spherical whispering-gallery-mode microresonators[J]. Laser & Photonics Reviews, 4, 457-482(2010).

    [21] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities[J]. Advanced Optical Materials, 3, 1136-1162(2015).

    [22] Jiang X F, Xiao Y F, Zou C L et al. 24(35): OP260-OP264[J]. ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Advanced Materials(2012).

    [23] Tang B, Dong H X, Sun L X et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 11, 10681-10688(2017).

    [24] Rokhsari H, Vahala K J. Ultralow loss, High Q, four port resonant couplers for quantum optics and photonics[J]. Physical Review Letters, 92, 253905(2004).

    [25] Avino S, Krause A, Zullo R et al. Direct sensing in liquids using whispering-gallery-mode droplet resonators[J]. Advanced Optical Materials, 2, 1155-1159(2014).

    [26] Li B B, Clements W R, Yu X C et al. Single nanoparticle detection using split-mode microcavity Raman lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 14657-14662(2014).

    [27] Bashar S B, Wu C X, Suja M et al. Electrically pumped whispering gallery mode lasing from Au/ZnO microwire Schottky junction[J]. Advanced Optical Materials, 4, 2063-2067(2016).

    [28] Du M C, Liu Q Q, Lang M et al. Research progress and application of cell lasers[J]. Laser & Optoelectronics Progress, 55, 120001(2018).

    [29] Sandoghdar V, Treussart F, Hare J et al. Very low threshold whispering-gallery-mode microsphere laser[J]. Physical Review A, 54, R1777-R1780(1996).

    [30] Maker A J, Armani A M. Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon[J]. Optics Express, 21, 27238-27245(2013).

    [31] Mehrabani S, Armani A M. Blue upconversion laser based on thulium-doped silica microcavity[J]. Optics Letters, 38, 4346-4349(2013).

    [32] Dong C H, Yang Y, Shen Y L et al. Observation of microlaser with Er-doped phosphate glass coated microsphere pumped by 780 nm[J]. Optics Communications, 283, 5117-5120(2010).

    [33] Zhu H, Chen X, Jin L M et al. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals[J]. ACS Nano, 7, 11420-11426(2013).

    [34] Fernandez-Bravo A, Yao K Y, Barnard E S et al. Continuous-wave upconverting nanoparticle microlasers[J]. Nature Nanotechnology, 13, 572-577(2018).

    [35] Ouyang T C, Kang S L, Zhang Z S et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities[J]. Advanced Optical Materials, 7, 1900197(2019).

    [36] Lawandy N M, Balachandran R M. Gomes A S L, et al. Laser action in strongly scattering media[J]. Nature, 368, 436-438(1994).

    [37] Wiersma D S. Disordered photonics[J]. Nature Photonics, 7, 188-196(2013).

    [38] Cao H. Random lasers: development, features and applications[J]. Optics and Photonics News, 16, 24-29(2005).

    [39] Luan F, Gu B B. Gomes A S L, et al. Lasing in nanocomposite random media[J]. Nano Today, 10, 168-192(2015).

    [40] Song Q H, Xiao S M, Xu Z B et al. Random lasing in bone tissue[J]. Optics Letters, 35, 1425-1427(2010).

    [41] Baudouin Q, Mercadier N, Guarrera V et al. A cold-atom random laser[J]. Nature Physics, 9, 357-360(2013).

    [42] García P, Sapienza R. Blanco, et al. Photonic glass: a novel random material for light[J]. Advanced Materials, 19, 2597-2602(2007).

    [43] Hsu H C, Wu C Y, Hsieh W F. Stimulated emission and lasing of random-growth oriented ZnO nanowires[J]. Journal of Applied Physics, 97, 064315(2005).

    [44] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics, 6, 355-359(2012).

    [45] Ma R, Rao Y J, Zhang W L et al. Multimode random fiber laser for speckle-free imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).

    [46] Xu X H, Zhang W F, Jin L M et al. Random lasing in Eu 3+doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation[J]. Nanoscale, 7, 16246-16250(2015).

    [47] Xu X H, Zhang W F, Yang D C et al. Phonon-assisted population inversion in lanthanide-doped upconversion Ba2LaF7 nanocrystals in glass-ceramics[J]. Advanced Materials, 28, 8045-8050(2016).

    [48] Li X Y, Chen D Q, Huang F et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence[J]. Laser & Photonics Reviews, 12, 1800030(2018).

    Tianchang Ouyang, Guoping Dong, Jianrong Qiu. Research Progress in Solid-State Lasers Based on Rare Earth Ion-doped Oxyfluoride Glass Ceramics[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071608
    Download Citation