• Chinese Optics Letters
  • Vol. 20, Issue 12, 122702 (2022)
Yuhao Pan1、2, Li Li1、2, Xiaolong Zhou1、2, Dongyu Huang1、2, Zemin Shen1、2, Jian Wang1、2、*, Chuanfeng Li1、2, and Guangcan Guo1、2
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, , Hefei 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, , Hefei 230026, China
  • show less
    DOI: 10.3788/COL202220.122702 Cite this Article Set citation alerts
    Yuhao Pan, Li Li, Xiaolong Zhou, Dongyu Huang, Zemin Shen, Jian Wang, Chuanfeng Li, Guangcan Guo. Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment[J]. Chinese Optics Letters, 2022, 20(12): 122702 Copy Citation Text show less
    References

    [1] J. L. Bohn, A. M. Rey, J. Ye. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science, 357, 1002(2017).

    [2] S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, J. Ye. New frontiers for quantum gases of polar molecules. Nat. Phys., 13, 13(2017).

    [3] Y. Liu, M.-G. Hu, M. A. Nichols, D. Yang, D. Xie, H. Guo, K.-K. Ni. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature, 593, 379(2021).

    [4] W. G. Tobias, K. Matsuda, J.-R. Li, C. Miller, A. N. Carroll, T. Bilitewski, A. M. Rey, J. Ye. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science, 375, 1299(2022).

    [5] H. Yang, X.-Y. Wang, Z. Su, J. Cao, D.-C. Zhang, J. Rui, B. Zhao, C.-L. Bai, J.-W. Pan. Evidence for the association of triatomic molecules in ultracold 23Na40K + 40K mixtures. Nature, 602, 229(2022).

    [6] H. Weimer. Quantum simulation of many-body spin interactions with ultracold polar molecules. Mol. Phys., 111, 1753(2013).

    [7] T. Schuster, F. Flicker, M. Li, S. Kotochigova, J. E. Moore, J. Ye, N. Y. Yao. Floquet engineering ultracold polar molecules to simulate topological insulators. Phys. Rev. A, 103, 063322(2021).

    [8] P. Yu, L. W. Cheuk, I. Kozyryev, J. M. Doyle. A scalable quantum computing platform using symmetric-top molecules. New J. Phys., 21, 093049(2019).

    [9] S. F. Yelin, K. Kirby, R. Côté. Schemes for robust quantum computation with polar molecules. Phys. Rev. A, 74, 050301(2006).

    [10] V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, A. Collaboration. Improved limit on the electric dipole moment of the electron. Nature, 562, 355(2018).

    [11] T. Bilitewski, L. De Marco, J.-R. Li, K. Matsuda, W. G. Tobias, G. Valtolina, J. Ye, A. M. Rey. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett., 126, 113401(2021).

    [12] B. L. Augenbraun, Z. D. Lasner, A. Frenett, H. Sawaoka, C. Miller, T. C. Steimle, J. M. Doyle. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys., 22, 022003(2020).

    [13] E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, D. DeMille. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett., 116, 063004(2016).

    [14] S. Ding, Y. Wu, I. A. Finneran, J. J. Burau, J. Ye. Sub-Doppler cooling and compressed trapping of YO molecules at µK temperatures. Phys. Rev. X, 10, 021049(2020).

    [15] L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, J. M. Doyle. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett., 119, 103201(2017).

    [16] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, J. M. Doyle. An optical tweezer array of ultracold molecules. Science, 365, 1156(2019).

    [17] Y. Wu, J. J. Burau, K. Mehling, J. Ye, S. Ding. High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett., 127, 263201(2021).

    [18] K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys., 78, 483(2006).

    [19] C. Chin, R. Grimm, P. Julienne, E. Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225(2010).

    [20] K. Bergmann, H.-C. Nägerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann, S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro, B. Hillebrands, X.-F. Zhu, J. Zhu, M. Drewsen, W. K. Hensinger, S. Weidt, T. Halfmann, H.-L. Wang, G. S. Paraoanu, N. V. Vitanov, J. Mompart, T. Busch, T. J. Barnum, D. D. Grimes, R. W. Field, M. G. Raizen, E. Narevicius, M. Auzinsh, D. Budker, A. Pálffy, C. H. Keitel. Roadmap on STIRAP applications. J. Phys. B, 52, 202001(2019).

    [21] L. D. Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, J. Ye. A degenerate Fermi gas of polar molecules. Science, 363, 853(2019).

    [22] X. He, K. Wang, J. Zhuang, P. Xu, X. Gao, R. Guo, C. Sheng, M. Liu, J. Wang, J. Li, G. V. Shlyapnikov, M. Zhan. Coherently forming a single molecule in an optical trap. Science, 370, 331(2020).

    [23] Y. Yu, K. Wang, J. D. Hood, L. R. B. Picard, J. T. Zhang, W. B. Cairncross, J. M. Hutson, R. Gonzalez-Ferez, T. Rosenband, K.-K. Ni. Coherent optical creation of a single molecule. Phys. Rev. X, 11, 031061(2021).

    [24] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399(2021).

    [25] Y. Huang, Z. Dang, X. He, Z. Fang. Engineering of single-photon emitters in hexagonal boron nitride [Invited]. Chin. Opt. Lett., 20, 032701(2022).

    [26] M. Brekenfeld, D. Niemietz, J. D. Christesen, G. Rempe. A quantum network node with crossed optical fibre cavities. Nat. Phys., 16, 647(2020).

    [27] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, G. Rempe. A quantum-logic gate between distant quantum-network modules. Science, 371, 614(2021).

    [28] D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger, V. Sandoghdar. Turning a molecule into a coherent two-level quantum system. Nat. Phys., 15, 483(2019).

    [29] T. Kampschulte, J. Hecker Denschlag. Cavity-controlled formation of ultracold molecules. New J. Phys., 20, 123015(2018).

    [30] J. Pérez-Ríos, M. E. Kim, C.-L. Hung. Ultracold molecule assembly with photonic crystals. New J. Phys., 19, 123035(2017).

    [31] D. Wellnitz, S. Schütz, S. Whitlock, J. Schachenmayer, G. Pupillo. Collective dissipative molecule formation in a cavity. Phys. Rev. Lett., 125, 193201(2020).

    [32] M. Zhu, Y.-C. Wei, C.-L. Hung. Resonator-assisted single-molecule quantum state detection. Phys. Rev. A, 102, 023716(2020).

    [33] F. Herrera, F. C. Spano. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett., 116, 238301(2016).

    [34] F. J. Garcia-Vidal, C. Ciuti, T. W. Ebbesen. Manipulating matter by strong coupling to vacuum fields. Science, 373, eabd0336(2021).

    [35] D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, J. Reichel. A fiber Fabry-Perot cavity with high finesse. New J. Phys., 12, 065038(2010).

    [36] H. Pfeifer, L. Ratschbacher, J. Gallego, C. Saavedra, A. Faßbender, A. von Haaren, W. Alt, S. Hofferberth, M. Köhl, S. Linden, D. Meschede. Achievements and perspectives of optical fiber Fabry-Perot cavities. Appl. Phys. B, 128, 29(2022).

    [37] L. Zhou, C. Wang, A. Yi, C. Shen, Y. Zhu, K. Huang, M. Zhou, J. Zhang, X. Ou. Photonic crystal nanobeam cavities based on 4H-silicon carbide on insulator. Chin. Opt. Lett., 20, 031302(2022).

    [38] L. Fang, X. Gan, J. Zhao. High-Q factor photonic crystal cavities with cut air holes [Invited]. Chin. Opt. Lett., 18, 111402(2020).

    [39] S. Subramanian, S. Vincent, F. Vollmer. Effective linewidth shifts in single-molecule detection using optical whispering gallery modes. Appl. Phys. Lett., 117, 151106(2020).

    [40] M. A. Bellos, D. Rahmlow, R. Carollo, J. Banerjee, O. Dulieu, A. Gerdes, E. E. Eyler, P. L. Gould, W. C. Stwalley. Formation of ultracold Rb2 molecules in the v″ = 0 level of the a3Σu+ state via blue-detuned photoassociation to the 13πg state. Phys. Chem. Chem. Phys., 13, 18880(2011).

    [41] M. H. Bitarafan, R. G. DeCorby. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information. Sensors, 17, 1748(2017).

    [42] M. Uphoff, M. Brekenfeld, G. Rempe, S. Ritter. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities. New J. Phys., 17, 013053(2015).

    [43] J.-M. Cui, K. Zhou, M.-S. Zhao, M.-Z. Ai, C.-K. Hu, Q. Li, B.-H. Liu, J.-L. Peng, Y.-F. Huang, C.-F. Li, G.-C. Guo. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings. Appl. Phys. Lett., 112, 171105(2018).

    [44] J. Gallego, S. Ghosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, L. Ratschbacher. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis. Appl. Phys. B, 122, 47(2016).

    [45] Y. Zhao, Y. Wang, H. Gong, J. Shao, Z. Fan. Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors. Appl. Surf. Sci., 210, 353(2003).

    [46] B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, T. E. Northup. Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum., 84, 123104(2013).

    [47] D. Gangloff, M. Shi, T. Wu, A. Bylinskii, B. Braverman, M. Gutierrez, R. Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenković, I. Chuang, V. Vuletić. Preventing and reversing vacuum-induced optical losses in high-finesse tantalum (V) oxide mirror coatings. Opt. Express, 23, 18014(2015).

    [48] J. Gallego, W. Alt, T. Macha, M. Martinez-Dorantes, D. Pandey, D. Meschede. Strong purcell effect on a neutral atom trapped in an open fiber cavity. Phys. Rev. Lett., 121, 173603(2018).

    Data from CrossRef

    [1] Xiao-Long Zhou, Dong-Yu Huang, Ze-Min Shen, Yu-Hao Pan, Li Li, Yi-Jia Liu, Jian Wang, Chuan-Feng Li, Guang-Can Guo. Active stabilization of multi-parameter in AMO experiments with a single digital servo. Optics & Laser Technology, 167, 109791(2023).

    Yuhao Pan, Li Li, Xiaolong Zhou, Dongyu Huang, Zemin Shen, Jian Wang, Chuanfeng Li, Guangcan Guo. Fabrication, testing, and assembly of high-finesse optical fiber microcavity for molecule cavity QED experiment[J]. Chinese Optics Letters, 2022, 20(12): 122702
    Download Citation