• Chinese Optics Letters
  • Vol. 19, Issue 12, 123603 (2021)
Walid Aroua*
Author Affiliations
  • National Institute of Applied Sciences and Technology, Carthage University, 1080 Tunis, Tunisia
  • show less
    DOI: 10.3788/COL202119.123603 Cite this Article Set citation alerts
    Walid Aroua. Metallic nanoparticles/graphene-molecules hybrid system-based active biosensor[J]. Chinese Optics Letters, 2021, 19(12): 123603 Copy Citation Text show less
    References

    [1] D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 16, 121(2001).

    [2] P. Damborský, J. Švitel, J. Katrlík. Optical biosensors. Essays Biochem., 60, 91(2016).

    [3] S. M. Yoo, S. Y. Lee. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 34, 7(2016).

    [4] C. Chen, J. Wang. Optical biosensors: an exhaustive and comprehensive review. Analyst, 145, 1605(2020).

    [5] K. Xu, Y. Chen, T. A. Okhai, L. W. Snyman. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt. Mater. Express, 9, 3985(2019).

    [6] K. Xu. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng., 31, 054001(2021).

    [7] M. Soler, O. Calvo-Lozano, M.-C. Estevez, L. M. Lechuga. Nanophotonic biosensors: driving personalized medicine. Opt. Photon. News, 31, 4(2020).

    [8] M. Mesch, B. Metzger, M. Hentschel, H. Giessen. Nonlinear plasmonic sensing. Nano Lett., 16, 3155(2016).

    [9] G. Emir, Y. Dilgin, A. Ramanaviciene, A. Ramanavicius. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchem. J., 161, 105751(2021).

    [10] Y. Zhou, A. Marar, P. Kner, R. P. Ramasamy. Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal. Chem., 89, 5734(2017).

    [11] A. B. Socorro-Leránoz, D. Santano, I. Del Villar, I. R. Matias. Trends in the design of wavelength-based optical fibre biosensors (2008–2018). Biosens. Bioelectron. X, 1, 100015(2019).

    [12] D. T. Hoa, T. N. Suresh Kumar, N. S. Punekar, R. S. Srinivasa, R. Lal, A. Q. Contractor. Biosensor based on conducting polymers. Anal. Chem., 64, 2645(1992).

    [13] E. A. Chiticaru, L. Pilan, C. M. Damian, E. Vasile, J. S. Burns, M. Ioniţă. Influence of graphene oxide concentration when fabricating an electrochemical biosensor for DNA detection. Biosensors, 9, 113(2019).

    [14] J. Peña-Bahamonde, H. N. Nguyen, S. K. Fanourakis. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol., 16, 75(2018).

    [15] S. Liu, Z. Yang, Y. Chang, Y. Chai, R. Yuan. An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2 Au nanocatalysts for microRNA-21 detection. Biosens. Bioelectron., 119, 170(2018).

    [16] C. Liu, X. Zeng, Z. An, Y. Yang, Y. Yang, M. Eisenbaum, X. Gu, J. M. Jornet, G. K. Dy, M. E. Reid, Q. Gan, Y. Wu. Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sens., 3, 1471(2018).

    [17] Y. Yi, B. Xie, T. Zhao, Z. Li, D. Stom, H. Liu. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry, 125, 71(2019).

    [18] S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón. Molecular biosensors for electrochemical detection of infectious pathogens in liquid biopsies: current trends and challenges. Sensors, 17, 2533(2017).

    [19] M. Manzano, S. Viezzi, S. Mazerat, R. S. Marks, J. Vidic. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron., 100, 89(2018).

    [20] M. Manzano, S. Viezzi, S. Mazerat, R. S. Marks, J. Vidic. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron., 100, 89(2018).

    [21] H. V. Raghu, N. Dasgupta, T. Parkunan, S. Ranjan, N. Kumar, E. Lichtfouse. Application of nanobiosensors for food safety monitoring. Environmental Nanotechnology(2020).

    [22] L. Wu, H. S. Chu, W. S. Koh, E. P. Li. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express, 18, 14395(2010).

    [23] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112, 2739(2012).

    [24] J. Meyer, A. Geim, M. Katsnelson. The structure of suspended graphene sheets. Nature, 446, 60(2007).

    [25] L. Pu, M. Baig, V. Maheshwari. Nanoparticle chains as electrochemical sensors and electrodes. Anal. Bioanal. Chem., 408, 2697(2016).

    [26] X. Zhao, L. Yang, J. Guo, T. Xiao, Y. Zhou, Y. Zhang, B. Tu, T. Li, B. A. Grzybowski, Y. Yan. Transistor and logic circuit based on metal nanoparticles and ionic gradients. Nat. Electron., 4, 109(2021).

    [27] S. H. Lee, B.-H. Jun. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci., 20, 865(2019).

    [28] L. J. Mendoza Herrera, D. M. Arboleda, D. C. Schinca, L. B. Scaffardi. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles. J. Appl. Phys., 116, 233105(2014).

    [29] P. E. Coulon, J. Amici, M. C. Clochard. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies. Sci. Rep., 6, 21116(2016).

    [30] Y. Gao, I. Shadrivov. Nonlinear coupling in graphene-coated nanowires. Sci. Rep., 6, 38924(2016).

    [31] L. Zundel, A. Manjavacas. Spatially resolved optical sensing using graphene nanodisk arrays. ACS Photon., 4, 1831(2017).

    [32] N. A. Savostianova, S. A. Mikhailov. Optical Kerr effect in graphene: theoretical analysis of the optical heterodyne detection technique. Phys. Rev. B, 97, 165424(2018).

    [33] S. Sumi, H. Awano, M. Hayashi. Interference induced enhancement of magneto-optical Kerr effect in ultrathin magnetic films. Sci. Rep., 8, 776(2018).

    [34] H. Nadjari, Z. Abasi Azad. Determining the nonlinear coefficient of gold and silver nano-colloids using SPM and CW Z-scan. Opt. Laser Technol., 44, 1629(2012).

    Walid Aroua. Metallic nanoparticles/graphene-molecules hybrid system-based active biosensor[J]. Chinese Optics Letters, 2021, 19(12): 123603
    Download Citation