• Acta Optica Sinica
  • Vol. 36, Issue 10, 1016002 (2016)
Liu Yuanzhong*, Zhang Yuping, Cao Yanyan, Li Yue, Xu Shilin, and Zhang Huiyun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.1016002 Cite this Article Set citation alerts
    Liu Yuanzhong, Zhang Yuping, Cao Yanyan, Li Yue, Xu Shilin, Zhang Huiyun. Modulator of Tunable Modulation Depth Based on Graphene Metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] Yu Hailing, Zhu Jiaqi, Cao Wenxin, et al. Process in preparation of metal-catalyzed graphene[J]. Acta Phys Sin, 2013, 62(2): 028201.

    [3] Zhou Yin, Hou Zhaoxia, Wang Shaohong, et al. Preparation methods and development and application prospects of graphene[J]. Ordnance Material Science and Engineering, 2012, 35(3): 86-90.

    [4] Wang Wenrong, Zhou Yuxiu, Li Tie, et al. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition[J]. Acta Phys Sin, 2012, 61(3): 038702.

    [5] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

    [6] Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

    [7] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4(9): 611-622.

    [8] Zhao Xin, Yan Xiaoqing, Ma Qiang, et al. Optical nonlinearities of reduced graphene oxide[J]. Acta Optica Sinica, 2013, 33(7): 0719001.

    [9] Liang Xianqing. The approximate calculation of the tight binding band structure of graphene[J]. Guangxi Physics, 2011, 32(1): 7-10.

    [10] Sensale-Rodriguez B, Fang T, Yan R, et al. Unique prospects for graphene-based terahertz modulators[J]. Appl Phys Lett, 2011, 99(11): 113104.

    [11] Ye C Y, Zhu Z H, Xu W, et al. Electrically tunable absorber based on nonstructured graphene[J]. J Optics, 2015, 17(12): 125009.

    [12] Zhang Huiyun, Huang Xiaoyan, Chen Qi, et al. Tunable terahertz absorber based on complementary graphene meta-surface[J]. Acta Phys Sin, 2016, 65(1): 018101.

    [13] Liu Yi, Peng Xiaoyu, Wang Zuobin, et al. Terahertz-wave absorber based on metamaterial[J]. Infrared Technology, 2015, 37(9): 756-763.

    [14] Amin M, Farhat M, Bagc H. An ultra-broadband multilayered graphene absorber[J]. Opt Express, 2013, 21(24): 29938-29948.

    [15] Sheng Shiwei, Li Kang, Kong Fanmin, et al. Tooth-shaped plasmonic filter based on graphene Nanoribbon[J]. Acta Phys Sin, 2015, 64(10): 108402.

    [16] Rycerz A, Tworzydo J, Beenakker C W J. Valley filter and valley valve in graphene[J]. Nat Phys, 2007, 3(3): 172-175.

    [17] Zhang B, Cui T H. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly[J]. Appl Phys Lett, 2011, 98(7): 073116.

    [18] Liao Guozhen, Zhang Jun, Cai Xiang, et al. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

    [19] Tang Linfeng, Ye Shengwei, Zheng Xiu, et al. Recent development in graphene-based optical modulator[J]. Laser Journal, 2013, 34(6): 1-4.

    [20] Sheng S W, Li K, Kong F M, et al. Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator[J]. Opt Commun, 2015, 336: 189-196.

    [21] Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509.

    [22] Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell′s law[J]. Phys Rev Lett, 2003, 90(13): 137401.

    [23] Liu Ye, Li Zhuying, Zhang Wangzhou, et al. Design and emulation of combined-shaped electromagnetic stealthy cloak made of metamaterials[J]. Journal of Functional Materials, 2013, 44(15): 2235-2238.

    [24] Zou Taobo, Hu Fangrong, Xiao Jing, et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials[J]. Acta Phys Sin, 2014, 63(17): 178103.

    [25] Zhang Yuping, Li Tongtong, Lv Huanhuan, et al. Research on sensing characteristics of I-shaped terahertz metamaterial absorber[J]. Acta Phys Sin, 2015, 64(11): 117801.

    [26] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3): 148-151.

    [27] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

    [28] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    [29] Kim K, Choi J Y, Kim T, et al. A role for graphene in silicon-based semiconductor devices[J]. Nature, 2011, 479(7373): 338-344.

    [30] Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Lett, 2012, 12(3): 1482-1485.

    [31] Sensale-Rodriguez B, Rafique S, Yan R S, et al. Terahertz imaging employing graphene modulator arrays[J]. Opt Express s, 2013, 21(2): 2324-2330.

    [32] Li W, Chen B G, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Lett, 2014, 14(2): 955-959.

    [33] Liang G Z, Hu X N, Yu X C, et al. Integrated terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2(11): 1559-1566.

    [34] Delgado V, Sydoruk O, Tatartschuk E, et al. Analytical circuit model for split ring resonators in the far infraredand optical frequency range[J]. Metamaterials, 2009, 3(2): 57-62.

    [35] Shi X, Han D Z, Dai Y Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Opt Express, 2013, 21(23): 28438-28443.

    [36] Zhao X L, Yuan C, Lv W H, et al. Plasmon induced transparency in metamaterial based on graphene and split-ring resonators[J]. IEEE Photonic Tech L, 2015, 27(12): 1321-1324.

    [37] Gu J Q, Singh R J, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3(4): 1151.

    CLP Journals

    [1] Shaoliang Wang, Ziwei Ye, Xiliang Peng, Ran Hao. Study of Highly-Efficient Composite Waveguide Modulator Based on Graphene[J]. Acta Optica Sinica, 2018, 38(5): 0513003

    [2] Sun Bin, Yang Youchang, Wan Meng, Xie Feifeng. Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102401

    [3] Cai Qiang, Ye Runwu, Fang Yuntuan. Broadband Absorption Based on Graphene Metamaterial Composite Structure[J]. Chinese Journal of Lasers, 2017, 44(10): 1003005

    [4] Su Sisi, Yan Fengping, Tan Siyu, Wang Wei, Sun Huihui. Design of Antireflection Coating Based on Broadband Terahertz Metamaterial with Stand-Up Structure[J]. Chinese Journal of Lasers, 2018, 45(4): 414001

    [5] Sun Bin, Yang Youchang, Wan Meng, Xie Feifeng. Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102401

    [6] Zhiquan Li, Dandan Feng, Xin Li, Landi Bai, Tonglei Liu, Zhong Yue, Erdan Gu. Graphene Surface Plasmon Polaritons Based Photoelectric Modulator with Double Branched Structure[J]. Acta Optica Sinica, 2018, 38(1): 0124001

    [7] Cai Qiang, Fang Yuntuan. Study on Wide-Angle High-Absorption Based on Graphene Metamaterials[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81601

    Liu Yuanzhong, Zhang Yuping, Cao Yanyan, Li Yue, Xu Shilin, Zhang Huiyun. Modulator of Tunable Modulation Depth Based on Graphene Metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002
    Download Citation