• Journal of Innovative Optical Health Sciences
  • Vol. 4, Issue 4, 395 (2011)
MING-QIANG ZHU1, GUO-FENG ZHANG1, CHONG LI1, YA-JING LI1, MATTHEW P. ALDRED1, and ALEXANDER D. Q. LI2、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074, China
  • 2Department of Chemistry, Washington State University Pullman, WA 99164, USA
  • show less
    DOI: 10.1142/s1793545811001423 Cite this Article
    MING-QIANG ZHU, GUO-FENG ZHANG, CHONG LI, YA-JING LI, MATTHEW P. ALDRED, ALEXANDER D. Q. LI. PHOTOSWITCHABLE NANOFLUOROPHORES FOR INNOVATIVE BIOIMAGING[J]. Journal of Innovative Optical Health Sciences, 2011, 4(4): 395 Copy Citation Text show less
    References

    [1] B. N. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).

    [2] M. Fern-andez-Su-arez, A. Y. Ting, "Fluorescent probes for super-resolution imaging in living cell," Nature Reviews Molecular Cell Biology 9, 929-943 (2008).

    [3] E. Betzig et al., "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).

    [4] G. Donnert et al., "Macromolecular-scale resolution in biological fluorescence microscopy," Proc. Natl. Acad. Sci. USA 103, 11,440-11,445 (2006).

    [5] G. H. Patterson, J. Lippincott-Schwartz, "A photoactivatable GFP for selective photolabeling of proteins and cells," Science 297, 1873-1877 (2002).

    [6] F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, V. V. Verkhusha, "Photoactivatable mCherry for high-resolution twocolor fluorescence microscopy," Nat. Methods 6, 153-159 (2009).

    [7] N. G. Gurskaya, V. V. Verkhusha, A. S. Shcheglov, D. B. Staroverov, T. V. Chepurnykh, A. F. Fradkov, S. Lukyanov, K. A. Lukyanov, "Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light," Nat. Biotechnol. 24, 461-465 (2006).

    [8] J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K. D. Spindler, G. U. Nienhaus, "EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion," Proc. Natl. Acad. Sci. USA 101, 15,905-15,910 (2004).

    [9] R. Ando, H. Mizuno, A. Miyawaki, "Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting," Science 306, 1370-1373 (2004).

    [10] H. M. O'Hare, K. Johnsson, A. Gautier, "Chemical probes shed light on protein function," Curr. Opin. Struct. Biol. 17, 488-494 (2007).

    [11] G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien, X. Zhuang, "Photoswitching mechanism of cyanine dyes," J. Am. Chem. Soc. 131, 18,192-18,193 (2009).

    [12] X. Zhuang, "Nano-imaging with STORM," Nat. Photon. 3, 365-367 (2009).

    [13] B. Huang, W. Wang, M. Bates, X. Zhuang, "Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science 319, 810-813 (2008).

    [14] M. Bates, B. Huang, G. Dempsey, X. Zhuang, "Multicolor super-resolution imaging with photoswitchable fluorescent probes," Science 317, 1749-1753 (2007).

    [15] T. Kobayashi, Y. Urano, M. Kamiya, T. Ueno, H. Kojima, T. Nagano, "Highly activatable and rapidly releasable caged fluorescein derivatives," J. Am. Chem. Soc. 129, 6696-6697 (2007).

    [16] S. Mao, R. K. Benninger, Y. Yan, C. Petchprayoon, D. Jackson, C. J. Easley, D. W. Piston and G. Marriott, "Optical lock-in detection of FRET using synthetic and genetically encoded optical switches," Biophys. J. 94, 4515-4524 (2008).

    [17] M. Pan, J. N. Yao, Z. Tong, Molecular Photochemistry and Functional Materials Science (Chinese Science Press, 2009).

    [18] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, "Organic chemistry: A digital fluorescent molecular photoswitch," Nature 420, 759-760 (2002).

    [19] A. Natansohn, P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. 102, 4139-4176 (2002).

    [20] S. Kawata, Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100, 1777-1788 (2000).

    [21] Y. Yokoyama, "Fulgides for memories and switches," Chem. Rev. 100(5), 1717-1740 (2000).

    [22] T. Kudernac, N. S ndig, T. Fernandez Landaluce, B. J. van Wees, P. Rudolf, N. Katsonis, F. Zerbetto, B. L. Feringa, "Intermolecular repulsion through interfacial attraction: Toward engineering of polymorphs," J. Am. Chem. Soc. 131(43), 15,655- 15,659 (2009).

    [23] M. Q. Zhu, G. F. Zhang, C. Li, M. P. Aldred, E. Chang, R. A. Drezek, A.-D.-Q. Li, "Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells," J. Am. Chem. Soc. 133, 365 (2011).

    [24] M. Zhu, L. Zhu, J. Han, W. Wu, J. Hurst, A.-D.-Q. Li, "Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence," J. Am. Chem. Soc. 128, 4303-4309 (2006).

    [25] L. Zhu, M. Zhu, J. Hurst, A.-D.-Q. Li, "Lightcontrolled molecular switches modulate nanocrystal fluorescence," J. Am. Chem. Soc. 127, 8968-8970 (2005).

    [26] L. Zhu, W. Wu, M. Zhu, J. Han, J. Hurst, A.-D.-Q. Li, "Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell iImaging," J. Am. Chem. Soc. 129, 3524-3526 (2007).

    [27] Z. Tian, W. Wu, W. Wan, A.-D.-Q. Li, "Singlechromophore- based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging," J. Am. Chem. Soc. 131, 4245-4252 (2009).

    [28] D. Hu, Z. Tian, W. Wu, W. Wan, A.-D.-Q. Li, "Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy," J. Am. Chem. Soc. 130, 15,279-15,281 (2008).

    [29] J. C. Crano, R. J. Guglielmetti, Eds., Organic Photochromic and Thermochromic Compounds (Plenum Press, New York, 1999).

    [30] G. Berkovic, V. Krongauz, V. Weiss, "Spiropyrans and spirooxazines for memories and switches," Chem. Rev. 100, 1741-1754 (2000).

    [31] R. Guglielmetti, In Photochromism (Revised ed.) (Eds.: H. Dürr, T. H. Bouas-Laurent), (Elsevier, Amsterdam), pp. 855-878 (2003).

    [32] M. Irie, "Diarylethenes for memories and switches," Chem. Rev. 100, 1685-1716 (2000).

    [33] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, "Signaling recognition events with fluorescent sensors and switches," Chem. Rev. 97, 1515-1566 (1997).

    [34] G. Such, R. A. Evans, L. H. Yee, T. P. Davis, "Factors influencing photochromism of spiro-compounds within polymeric matrices," J. Macromol. Sci.-Polym. Rev. C43, 547-579 (2003).

    [35] S. Spagnoli, D. Block, E. Botzung-Appert, I. Colombier, P. L. Baldeck, A. Ibanez, A. Corval, "Photochromism of spiropyran nanocrystals embedded in sol gel matrices," J. Phys. Chem. B 109, 8587-8591 (2005).

    [36] V. I. Minkin, "Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds," Chem. Rev. 104, 2751-2776 (2004).

    [37] R. Ando, H. Mizuno, A. Miyawaki, "Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting," Science 306, 1370-1373 (2004).

    [38] M. Sauer, "Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging," Proc. Natl. Acad. Sci. USA 102, 9433-9434 (2005).

    [39] H. S. Nalwa, H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, A. Kakuta, A. Mukoh, H.Nakanishi, "Fabrication of organic nanocrystals for electronics and photonics," Adv. Mater. 5, 758-760 (1993).

    [40] Y. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao, J. Yao, "Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties," Adv. Mater. 20, 2859-2876 (2008).

    [41] I. Medintz, S. Trammell, H. Mattoussi, J. Mauro, "Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor," J. Am. Chem. Soc. 126, 30-31 (2004).

    [42] J. F lling, S. Polyakova, V. Belov, A. Blaaderen, M. Bossi, S. Hell, "Synthesis and characterization of photoswitchable fluorescent silica nanoparticles," Small 4, 134-142 (2008).

    [43] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73 (1990).

    [44] K. D. Belfield, M. V. Bondar, C. C. Corredor, F. E. Hernandez, O. V. Przhonska, S. Yao, "Two-photon photochromism of a diarylethene enhanced by f€orster resonance energy transfer from two-photon absorbing fluorenes," Chem. Phys. Chem. 7, 2514-2519 (2006).

    [45] J. Harada, R. Nakajima, K. Ogawa, "X-ray diffraction analysis of photochromic reaction of fulgides: Crystalline state reaction induced by twophoton excitation," J. Am. Chem. Soc. 130, 7085-7091 (2008).

    [46] S. Yao, H.-Y. Ahn, X. Wang, J. Fu, E. W. Van Stryland, D. J. Hagan, K. D. Belfield, "Donoracceptor- donor fluorene derivatives for two-photon fluorescence lysosomal imaging," J. Org. Chem. 75, 3965-3974 (2010).

    [47] C.-L. Liu, M.-L. Ho, Y.-C. Chen, C.-C. H. , Y.-C. Lin, Y.-H. Wang, M.-J. Yang, H.-S. Duan, B.-S. Chen, J.-F. Lee, J.-K. Hsiao, P.-T. Chou, J.-K. Hsiao, P.-T. Chou, "Thiol-functionalized gold nanodots; twophoton absorption property and imaging in vitro," J. Phys. Chem. C 113, 21,082-21,089 (2009).

    [48] B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002).

    [49] R. M. Williams, W. R. Zipfel, W. W. Webb, "1. Multiphoton microscopy in biological research," Curr. Opin. Chem. Biol. 5, 603-608 (2001).

    [50] R. Weissleder, "A clearer vision for in vivo imaging," Nat. Biotechnol. 19, 316-317 (2001).

    [51] P. T. So, C. Y. Dong, B. R. Master, K. M. Berland, "Two-photon excitation fluorescence microscopy," Annu. Rev. Biomed. Eng. 2, 399-429 (2000).

    [52] S. Hell, "Toward fluorescence nanoscopy," Nat. Biotechnol. 21, 1347-1355 (2003).

    [53] M. Rust, M. Bates, X. Zhuang, "Sub-diffractionlimit Imaging by Stochastic Optical Reconstruction Microscopy (STORM)," Nat. Methods 3, 793-795 (2007).

    [54] A. Egner, C. Geisler, C. Middendorff, H. Bock, D. Wenzel, R. Medda, M. Andresen, A. Stiel, S. Jakobs, C. Eggeling, A. Sch nle, S. Hell, "Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters," Biophys. J. 93, 3285-3290 (2006).

    [55] E. Toprak, P. Selvin, "New fluorescent tools for watching nanometer-scale conformational changes of single molecules," Annu. Rev. Biophys. Biomol. Struct. 36, 349-369 (2007).

    [56] M. Heilemann, S. Linde, M. Schttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, "Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes," Angew. Chem. 120, 6266-6271 (2008); Angew. Chem. Int. Ed. 47, 6172-6176 (2008).

    [57] S. Lord, N. Conley, H. Lee, R. Samuel, N. Liu, R. Twieg, W. Moerner, "A photoactivatable pushpull fluorophore for single-molecule imaging in live cells," J. Am. Chem. Soc. 130, 9204-9205 (2008).

    [58] S. Linde, M. Sauer, M. Heilemann, "Subdiffractionresolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores," J. Struct. Biol. 164, 250-254 (2008).

    [59] M. Fernandez, A. Ting, "Fluorescent probes for super-resolution imaging in living cells," Nat. Rev. Mol. Cell Biol. 9, 929-943 (2008).

    [60] S. Hell, "Far-field optical nanoscopy," Science 316, 1153-1158 (2007).

    [61] X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005).

    [62] W. Wu, A.-D.-Q. Li, "Optically switchable nanoparticles for biological imaging," Nanomedicine 2, 523-531 (2007).

    [63] Z. Tian, A. Shaller, A.-D.-Q. Li, "Twisted perylene dyes enable highly fluorescent and photostable nanoparticles," Chem. Commun. 180-182 (2009).

    MING-QIANG ZHU, GUO-FENG ZHANG, CHONG LI, YA-JING LI, MATTHEW P. ALDRED, ALEXANDER D. Q. LI. PHOTOSWITCHABLE NANOFLUOROPHORES FOR INNOVATIVE BIOIMAGING[J]. Journal of Innovative Optical Health Sciences, 2011, 4(4): 395
    Download Citation