• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111404 (2020)
Bo Zhao1、2, Xin Zheng1, Tingting Zou1, Hongbo Xie1, Wei Xin1, Jianjun Yang1、*, and Chunlei Guo1
Author Affiliations
  • 1State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
  • 2Department of Electronic Information and Physics, Changzhi University, Changzhi, Shanxi, 0 46011, China
  • show less
    DOI: 10.3788/LOP57.111404 Cite this Article Set citation alerts
    Bo Zhao, Xin Zheng, Tingting Zou, Hongbo Xie, Wei Xin, Jianjun Yang, Chunlei Guo. Control of Subwavelength Periodic Surface Structure Formation with Femtosecond Laser Pulses[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111404 Copy Citation Text show less
    References

    [1] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 36, 3688-3689(1965).

    [2] Emmony D C, Howson R P, Willis L J. Laser mirror damage in germanium at 10.6 μm[J]. Applied Physics Letters, 23, 598-600(1973).

    [3] Keilmann F, Bai Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A Solids and Surfaces, 29, 9-18(1982).

    [4] Sipe J E, Young J F, Preston J S et al. Laser-induced periodic surface structure. I. Theory[J]. Physical Review B, 27, 1141-1154(1983).

    [5] Zhou G S, Fauchet P M, Siegman A E. Growth of spontaneous periodic surface structures on solids during laser illumination[J]. Physical Review B, 26, 5366-5381(1982).

    [6] van Driel H M, Sipe J E, Young J F. Laser-induced periodic surface structure on solids: a universal phenomenon[J]. Physical Review Letters, 49, 1955-1958(1982).

    [7] Young J F. Preston J S,van Driel H M, et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass[J]. Physical Review B, 27, 1155-1172(1983).

    [8] Young J F. Sipe J E, van Driel H M. Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium[J]. Physical Review B, 30, 2001-2015(1984).

    [9] Seminogov V N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics[J]. Soviet Physics Uspekhi, 28, 1084-1124(1985).

    [10] Ozkan A M, Malshe A P, Railkar T A et al. Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters[J]. Applied Physics Letters, 75, 3716-3718(1999).

    [11] Borowiec A, Haugen H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 82, 4462-4464(2003).

    [12] Yang J J, Wang R, Liu W et al. Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses[J]. Journal of Physics D: Applied Physics, 42, 215305(2009).

    [13] Xue L, Yang J J. Yang, et al. Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses[J]. Applied Physics A, 109, 357-365(2012).

    [14] Wu B, Zhou M, Li B J et al. Microstructures on stainless steel surface induced by femtosecond laser pulse[J]. Laser & Optoelectronics Progress, 50, 111406(2013).

    [15] Wang L, Chen Q D, Cao X W et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light: Science & Applications, 6, e17112(2017).

    [16] Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 24, 042006(2012).

    [17] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 97, 013538(2005).

    [18] Huang M, Zhao F L, Cheng Y et al. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass[J]. Optics Express, 18, A600-A619(2010).

    [19] Hou S S, Huo Y Y, Xiong P X et al. Formation of long- and short-periodic nanoripples on stainless steel irradiated by femtosecond laser pulses[J]. Journal of Physics D: Applied Physics, 44, 505401(2011).

    [20] Qi L T, Nishii K, Namba Y. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel[J]. Optics Letters, 34, 1846-1848(2009).

    [21] Han Y H, Zhao X L, Qu S L. Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass[J]. Optics Express, 19, 19150-19155(2011).

    [22] Höhm S, Rosenfeld A, Krüger J et al. Femtosecond laser-induced periodic surface structures on silica[J]. Journal of Applied Physics, 112, 014901(2012).

    [23] Bonse J, Sturm H, Schmidt D et al. Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air[J]. Applied Physics A Materials Science & Processing, 71, 657-665(2000).

    [24] Bonse J, Höhm S, Rosenfeld A et al. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air[J]. Applied Physics A, 110, 547-551(2013).

    [25] Jia T Q, Zhao F L, Huang M et al. Alignment of nanoparticles formed on the surface of 6H-SiC crystals irradiated by two collinear femtosecond laser beams[J]. Applied Physics Letters, 88, 111117(2006).

    [26] Wang H Z, Yang F H, Yang F et al. Investigation of femtosecond-laser induced periodic surface structure on molybdenum[J]. Chinese Journal of Lasers, 42, 0103001(2015).

    [27] Golosov E V, Ionin A A, Kolobov Y R et al. Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief[J]. Journal of Experimental and Theoretical Physics, 113, 14-26(2011).

    [28] Hsu E M. Crawford T H R,Tiedje H F, et al. Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm[J]. Applied Physics Letters, 91, 111102(2007).

    [29] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 97, 013538(2005).

    [30] Yang Y, Yang J, Xue L et al. Surface patterning on periodicity of femtosecond laser-induced ripples[J]. Applied Physics Letters, 97, 141101(2010).

    [31] Bonse J, Krüger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 108, 034903(2010).

    [32] Sakabe S, Hashida M, Tokita S et al. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 79, 033409(2009).

    [33] Okamuro K, Hashida M, Miyasaka Y et al. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B, 82, 165417(2010).

    [34] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).

    [35] Golosov E V. Emel'yanov V I, Ionin A A, et al. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. JETP Letters, 90, 107-110(2009).

    [36] Shen M Y, Carey J E, Crouch C H et al. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water[J]. Nano Letters, 8, 2087-2091(2008).

    [37] Korol'Kov V P, Ionin A A, Kudryashov S I et al. Surface nanostructuring of Ni/Cu foilsby femtosecond laser pulses[J]. Quantum Electronics, 41, 387-392(2011).

    [38] Buividas R, Mikutis M, Juodkazis S. Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances[J]. Progress in Quantum Electronics, 38, 119-156(2014).

    [39] Tang Y F, Yang J J, Zhao B et al. Control of periodic ripples growth on metals by femtosecond laser ellipticity[J]. Optics Express, 20, 25826-25826(2012).

    [40] J J Nivas J, He S T, Rubano A et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a Q-plate[J]. Scientific Reports, 5, 17929(2015).

    [41] Ouyang J, Perrie W, Allegre O J et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring[J]. Optics Express, 23, 12562-12572(2015).

    [42] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 106, 104910(2009).

    [43] Huang M, Zhao F L, Cheng Y et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 3, 4062-4070(2009).

    [44] Miyaji G, Miyazaki K. Origin of periodicity innanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 16, 16265-16271(2008).

    [45] Garrelie F, Colombier J P, Pigeon F et al. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Optics Express, 19, 9035(2011).

    [46] Derrien J Y, Krüger J, Itina T E et al. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon[J]. Optics Express, 21, 29643(2013).

    [47] Reif J, Varlamova O, Costache F. Femtosecond laser induced nanostructure formation: self-organization control parameters[J]. Applied Physics A, 92, 1019-1024(2008).

    [48] Wu X J, Jia T Q, Zhao F L et al. Formation mechanisms of uniform arrays of periodic nanoparticles and nanoripples on 6H-SiC crystal surface induced by femtosecond laser ablation[J]. Applied Physics A, 86, 491-495(2007).

    [49] Dufft D, Rosenfeld A, Das S K et al. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO[J]. Journal of Applied Physics, 105, 034908(2009).

    [50] Sedao X, Shugaev M V, Wu C P et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification[J]. ACS Nano, 10, 6995-7007(2016).

    [51] Volkov S N, Kaplan A E, Miyazaki K. Evanescent field at nanocorrugated dielectric surface[J]. Applied Physics Letters, 94, 041104(2009).

    [52] Martsinovskiǐ G A, Shandybina G D, Smirnov D S et al. Ultrashort excitations of surface polaritons and waveguide modes in semiconductors[J]. Optics and Spectroscopy, 105, 67-72(2008).

    [53] Straub M, Afshar M, Feili D et al. Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon[J]. Journal of Applied Physics, 111, 124315(2012).

    [54] Bonse J, Hohm S, Kirner S V et al. Laser-induced periodic surface structures: a scientific evergreen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 9000615(2017).

    [55] Höhm S, Rosenfeld A, Krüger J et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica[J]. Applied Physics Letters, 102, 054102(2013).

    [56] Jia X, Jia T Q, Peng N N et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. Journal of Applied Physics, 115, 143102(2014).

    [57] Kafka K R P, Austin D R, Li H et al. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove[J]. Optics Express, 23, 19432-19441(2015).

    [58] Cheng K, Liu J, Cao K et al. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film[J]. Physical Review B, 98, 184106(2018).

    [59] Höhm S, Herzlieb M, Rosenfeld A et al. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science, 374, 331-338(2016).

    [60] Höhm S, Rohloff M, Rosenfeld A et al. Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences[J]. Applied Physics A, 110, 553-557(2013).

    [61] Jiang L, Shi X S, Li X et al. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains[J]. Optics Express, 20, 21505-21511(2012).

    [62] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [63] Gedvilas M, Mikšys J. Ra cˇiukaitis G. Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation[J]. RSC Advances, 5, 75075-75080(2015).

    [64] Li Y B, Bai F, Fan W Z et al. Color difference analysis of femtosecond laser colorized metals[J]. Acta Optica Sinica, 36, 0714003(2016).

    [65] Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 18, 2913-2924(2010).

    [66] Yao J W, Zhang C Y, Liu H Y et al. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses[J]. Applied Surface Science, 258, 7625-7632(2012).

    [67] Zorba V, Persano L, Pisignano D et al. Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation[J]. Nanotechnology, 17, 3234-3238(2006).

    [68] Zorba V, Stratakis E, Barberoglou M et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008).

    [69] Long J Y, Fan P X, Gong D W et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).

    [70] Blossey R. Self-cleaning surfaces: virtual realities[J]. Nature Materials, 2, 301-306(2003).

    [71] Ranella A, Barberoglou M, Bakogianni S et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 6, 2711-2720(2010).

    [72] Volkov R V, Golishnikov D M, Gordienko V M et al. Overheated plasma at the surface of a target with a periodic structure induced by femtosecond laser radiation[J]. Journal of Experimental and Theoretical Physics Letters, 77, 473-476(2003).

    [73] Karabutov A V, Frolov V D, Loubnin E N et al. Low-threshold field electron emission of Si micro-tip arrays produced by laser ablation[J]. Applied Physics A: Materials Science & Processing, 76, 413-416(2003).

    [74] Zorba V, Tzanetakis P, Fotakis C et al. Silicon electron emitters fabricated by ultraviolet laser pulses[J]. Applied Physics Letters, 88, 081103(2006).

    [75] Diebold E D, Mack N H, Doorn S K et al. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering[J]. Langmuir, 25, 1790-1794(2009).

    [76] Buividas R, Fahim N. Juodkazyt e· J, et al. Novel method to determine the actual surface area of a laser-nanotextured sensor[J]. Applied Physics A, 114, 169-175(2014).

    [77] Messaoudi H, Kumar Das S, Lange J et al[M]. Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules, 207-219(2014).

    [78] Born M, Wolf E, Hecht E. Principles of optics: electromagnetic theory of propagation, interference and diffraction oflight[J]. Physics Today, 53, 77-78(2000).

    [79] Mikutis M, Kudrius T, Šlekys G et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 3, 1862(2013).

    [80] Beresna M. Gecevi cˇius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 98, 201101(2011).

    [81] Richter S, Heinrich M, Döring S et al. Nanogratings in fused silica: Formation, control, and applications[J]. Journal of Laser Applications, 24, 042008(2012).

    [82] Cheng G H, Liu Q, Wang Y S et al. Three-dimensional multilevel memory based on laser-polarization-dependence birefringence[J]. Chinese Optics Letters, 4, 111-113(2006). http://www.opticsjournal.net/Articles/Abstract?aid=OJ0606060006071w4z7C

    [83] Yang Yang J J, Liang C Y et al. Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility[J]. Optics Express, 17, 21124-21133(2009).

    [84] Bush J R, Nayak B K, Nair L S et al. Improved bio-implant using ultrafast laser induced self-assembled nanotexture in titanium[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 97B, 299-305(2011).

    [85] Cunha A, Elie A M, Plawinski L et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 360, 485-493(2016).

    [86] Shinonaga T, Tsukamoto M, Kawa T et al. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium[J]. Applied Physics B, 119, 493-496(2015).

    [87] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [88] Li X, Feng D H, Jia T Q et al. Fabrication of a two-dimensional periodic microflower array by three interfered femtosecond laser pulses on Al: ZnO thin films[J]. New Journal of Physics, 12, 043025(2010).

    [89] Ruizde la Cruz A, Lahoz R, Siegel J et al. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser[J]. Optics Letters, 39, 2491(2014).

    [90] Öktem B, Pavlov I, Ilday S et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nature Photonics, 7, 897-901(2013).

    [91] Gnilitskyi I. Derrien ThibaultJ Y, Levy Y, et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity[J]. Scientific Reports, 7, 8485(2017).

    [92] Wang F, Zhao B, Lei Y H et al. Producing anomalous uniform periodic nanostructures on Cr thin films by femtosecond laser irradiation in vacuum[J]. Optics Letters, 45, 1301(2020).

    [93] Wang R P. Investigation of controllablefabricating periodicnanostructures on the metal surface by dual-color femtosecond laser pulses[D]. Tianjin: Nankai University, 28-35(2016).

    [94] Hashida M, Nishii T, Miyasaka Y et al. Orientation of periodic grating structures controlled by double-pulse irradiation[J]. Applied Physics A, 122, 484(2016).

    [95] Zhao B. Light-induced microscopic coherent oscillations and their physical influences on metal surfaces[D]. Tianjin: Nankai University, 76-90(2015).

    [96] He W L, Yang J J. Formation of slantwise orientated nanoscale ripple structures on a single-crystal 4H-SiC surface by time-delayed double femtosecond laser pulses[J]. Applied Physics A, 123, 518(2017).

    [97] He W L, Yang J J. Probing ultrafast nonequilibrium dynamics in single-crystal SiC through surface nanostructures induced by femtosecond laser pulses[J]. Journal of Applied Physics, 121, 123108(2017).

    [98] He W L, Yang J J, Guo C L. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations[J]. Optics Express, 25, 5156-5168(2017).

    [99] Qiao H Z. Investigation of femtosecond laser-induced two-dimensional metallic array submicron structures[D]. Tianjin: Nankai University, 32-66(2016).

    [100] Qiao H Z, Yang J J, Wang F et al. Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces[J]. Optics Express, 23, 26617-26627(2015).

    [101] Qiao H Z, Yang J J, Li J et al. Formation of subwavelength periodic triangular arrays on tungsten through double-pulsed femtosecond laser irradiation[J]. Materials, 11, 2380(2018).

    [102] Cong J, Yang J J, Zhao B et al. Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams[J]. Optics Express, 23, 5357-5367(2015).

    [103] Qin W W, Yang J J. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses[J]. Surface Science, 661, 28-33(2017).

    Bo Zhao, Xin Zheng, Tingting Zou, Hongbo Xie, Wei Xin, Jianjun Yang, Chunlei Guo. Control of Subwavelength Periodic Surface Structure Formation with Femtosecond Laser Pulses[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111404
    Download Citation