• Opto-Electronic Engineering
  • Vol. 51, Issue 2, 230210 (2024)
Ziyang Zhang1, Jun Chang1、*, Yifan Huang1、**, Qinfang Chen2, and Yunan Wu1
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, Shaanxi 710119, China
  • show less
    DOI: 10.12086/oee.2024.230210 Cite this Article
    Ziyang Zhang, Jun Chang, Yifan Huang, Qinfang Chen, Yunan Wu. Reinforcement learning-based stray light suppression study for space-based gravitational wave detection telescope system[J]. Opto-Electronic Engineering, 2024, 51(2): 230210 Copy Citation Text show less
    References

    [1] Z Wang, J Ma, J Q Li. Space-based gravitational wave detection mission: design highlights of LISA system. Chin Opt, 8, 980-987.(2015).

    [2] Z Wang, W Sha, Z Chen et al. Preliminary design and analysis of telescope for space gravitational wave detection. Chin Opt, 11, 131-151.(2018).

    [3] D F Wang, X Yao, Z K Jiao et al. Time-delay interferometry for space-based gravitational wave detection. Chin Opt, 14, 275-288.(2021).

    [4] M Nardello, M Lintz. Effective cross sections for stray light calculations in laser interferometry: application to LISA science interferometer. Proc SPIE, 11852, 118523Q(2021).

    [5] X Y Wang, S J Bai, Q Zhang et al. Research progress of telescopes for space-based gravitational wave missions. Opto-Electron Eng, 50, 230219.(2023).

    [6] J C Livas, S R Sankar. Optical telescope system-level design considerations for a space-based gravitational wave mission. Proc SPIE, 9904, 99041K(2016).

    [7] Y H Zhang, Z Q Zhong, B Zhang. Analysis of surface scattering characteristics of ultra-smooth optical components in gravitational wave detection system. Opto-Electron Eng, 50, 230222.(2023).

    [8] M Lapeyrolerie, M S Chapman, K E A Norman et al. Deep reinforcement learning for conservation decisions. Methods Ecol Evol, 13, 2649-2662(2022).

    [9] A Heuillet, F Couthouis, N Díaz-Rodríguez. Explainability in deep reinforcement learning. Knowl-Based Syst, 214, 106685(2021).

    [10] M I Jordan, T M Mitchell. Machine learning: trends, perspectives, and prospects. Science, 349, 255-260(2015).

    [11] H D Liu, H C Zhou, D D Wang et al. Performance comparison of two Monte Carlo ray-tracing methods for calculating radiative heat transfer. J Quant Spectrosc Radiat Transfer, 256, 107305(2020).

    [12] M Yarahmadi, J R Mahan, K J Priestley. Uncertainty analysis and experimental design in the Monte Carlo ray-trace environment. J Heat Transfer, 141, 032701(2019).

    [13] J R Howell. The Monte Carlo method in radiative heat transfer. J Heat Transfer, 120, 547-560(1998).

    [14] X Y Duan, C T He, X X Lin et al. Quasi-Monte Carlo ray tracing algorithm for radiative flux distribution simulation. Sol Energy, 211, 167-182(2020).

    Ziyang Zhang, Jun Chang, Yifan Huang, Qinfang Chen, Yunan Wu. Reinforcement learning-based stray light suppression study for space-based gravitational wave detection telescope system[J]. Opto-Electronic Engineering, 2024, 51(2): 230210
    Download Citation