• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201002 (2021)
Xiaomin Zhang1、*, Dongxia Hu1, Dangpeng Xu1, Jing Wang2, Xinbin Chen3, Jun Liu4, Wei Han1, Min Li1, and Mingzhong Li1
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • 2Key Laboratory for Laser Plasmas, Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 4Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • show less
    DOI: 10.3788/CJL202148.1201002 Cite this Article
    Xiaomin Zhang, Dongxia Hu, Dangpeng Xu, Jing Wang, Xinbin Chen, Jun Liu, Wei Han, Min Li, Mingzhong Li. Physical Limitations of High-Power, High-Energy Lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002 Copy Citation Text show less
    References

    [2] Siders C W, Haefner C. High-power lasers for science and society[R]. Oak Ridge: Office of Scientific and Technical Information (OSTI)(2016).

    [3] Haynam C A, Wegner P J, Auerbach J M et al. National ignition facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007).

    [4] Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 46, 0100003(2019).

    [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985). http://www.sciencedirect.com/science/article/pii/0030401885901518

    [6] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).

    [7] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [8] Perry M D, Pennington D, Stuart B C et al. Petawatt laser pulses[J]. Optics Letters, 24, 160-162(1999).

    [9] Kitagawa Y, Fujita H, Kodama R et al. Prepulse-free petawatt laser for a fast ignitor[J]. IEEE Journal of Quantum Electronics, 40, 281-293(2004). http://ieeexplore.ieee.org/document/1271361

    [10] Xu G, Wang T, Li Z Y et al. 1 kJ petawatt laser system for SG-II-U program[J]. The Review of Laser Engineering, 36, 1172-1175(2008). http://ci.nii.ac.jp/naid/130004465994

    [11] Mourou G, Tajima T. The extreme light infrastructure: optics’ next horizon[J]. Optics and Photonics News, 22, 47-51(2011). http://www.opticsinfobase.org/opn/abstract.cfm?uri=opn-22-7-47

    [12] Zeng X M, Zhou K N, Zuo Y L et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 42, 2014-2017(2017). http://europepmc.org/abstract/MED/28504737

    [13] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018). http://www.ncbi.nlm.nih.gov/pubmed/30439927

    [14] Wang Z H, Liu C, Shen Z W et al. High-contrast 1.16 PW Ti∶sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier[J]. Optics Letters, 36, 3194-3196(2011). http://www.ncbi.nlm.nih.gov/pubmed/21847205

    [15] Sung J H, Lee H W, Yoo J Y et al. 4.2 PW, 20 fs Ti∶sapphire laser at 0.1 Hz[J]. Optics Letters, 42, 2058-2061(2017). http://www.ncbi.nlm.nih.gov/pubmed/28569844

    [16] Kiriyama H, Nishiuchi M, Pirozhkov A S et al. J-KAREN-P laser facility at QST: high contrast, high intensity petawatt OPCPA/Ti∶sapphire hybrid laser system[C]. //2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany(2017).

    [17] Kessel A, Leshchenko V E, Jahn O et al. Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA[J]. Optica, 5, 434-442(2018). http://www.researchgate.net/publication/324361657_Relativistic_few-cycle_pulses_with_high_contrast_from_picosecond-pumped_OPCPA

    [18] Bromage J, Bahk S W, Begishev I A et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 7, 31-41(2019).

    [19] Tajima T, Mourou G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Physical Review Special Topics - Accelerators and Beams, 5, 031301(2002).

    [20] Liu Z J, Wang H Y, Xu X J. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).

    [21] Hecht J. Solid-state high-energy laser weapons[J]. Optics and Photonics News, 14, 42-47(2003). http://www.opticsinfobase.org/abstract.cfm?uri=opn-14-1-42

    [22] Du X W. Factors influencing key characteristic quantity of high energy laser system[J]. High Power Laser and Particle Beams, 22, 945-947(2010).

    [23] Banerjee S, Mason P, Phillips J et al. Pushing the boundaries of diode-pumped solid-state lasers for high-energy applications[J]. High Power Laser Science and Engineering, 8, e20(2020). http://www.cqvip.com/QK/72079X/202002/7102618658.html

    [24] Fattahi H, Barros H G, Gorjan M et al. Third-generation femtosecond technology[J]. Optica, 1, 45-63(2014).

    [26] Injeyan H, Goodno G, Palese S. High power laser handbook[M](2011).

    [27] Caird J, Agrawal V, Bayramian A et al. Nd∶glass laser design for laser ICF fission energy (LIFE)[J]. Fusion Science and Technology, 56, 607-617(2009).

    [28] Siegman A E. Lasers[M]. Mill Valley: University Science Books(1986).

    [29] Banerjee S, Ertel K, Mason P D et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb∶YAG laser[J]. Optics Express, 23, 19542-19551(2015). http://dx.doi.org/10.1364/oe.23.019542

    [30] Gonçalvès-Novo T, Albach D, Vincent B et al. 14 J/2 Hz Yb 3+∶YAG diode pumped solid state laser chain[J]. Optics Express, 21, 855-866(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-1-855

    [31] Koechner W. Properties of solid-state laser materials[M]. //Koechner W. Solid-state laser engineering. Springer series in optical sciences, 1, 38-101(2006).

    [32] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. Journal of Applied Physics, 34, 2346-2349(1963). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5126549

    [33] Fan D Y, Yu W Y. High power multi-pass amplifier[J]. Lasers, 7, 1-6(1980).

    [34] Jing F. Studies on multi-pass amplification system[D](1998).

    [35] Wang T. Numerical simulation and optimization design of multi pass laser amplification system[D](1999).

    [36] Siegman A E. Defining, measuring, and optimizing laser beam quality[J]. Proceedings of SPIE, 1868, 2-12(1993).

    [37] Hu D X. Studies on the wave-front correction techniques for high power solid lasers[D](2003).

    [38] Huang W Q, Zhang Y, Liu L Q et al. Relation between the root-mean-squared gradient of optics and the size of focal spot[J]. Acta Optica Sinica, 32, s114003(2012).

    [39] Su J Q, Jing F, Liu L Q et al. Research on PSD recovery algorithm and focusing characteristics of intense laser beam wavefront[C]. //The 15th China Laser Conference, September 20-24, 2001, Wuhan, China, 285-288(2001).

    [40] Liu H J, Jing F, Zuo Y L et al. Study of the dividing method of the wave-front spatial frequency of the high-power-laser beam[J]. Acta Photonica Sinica, 35, 1464-1467(2006).

    [41] Peng Z T, Jing F, Liu L Q et al. Power spectra density estimation of quality of the laser beam passing through an self-focusing media[J]. Acta Physica Sinica, 52, 87-90(2003).

    [42] Aikens D M. Origin and evolution of the optics specifications for the national ignition facility[J]. Proceedings of SPIE, 2536, 2-12(1995). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1005048

    [43] Spaeth M L, Manes K R, Widmayer C C et al. National ignition facility wavefront requirements and optical architecture[J]. Optical Engineering, 43, 25-42(2004).

    [44] Hocquet S, Penninckx D, Bordenave E et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 47, 3338-3349(2008).

    [45] Xu D P, Zhang R, Tian X C et al. Progress on FM-to-AM effect and its suppression in high power laser driver[J]. Laser & Optoelectronics Progress, 54, 020005(2017).

    [46] Wang J, Ma J G, Yuan P et al. In-band noise filtering via spatio-spectral coupling[J]. Laser & Photonics Reviews, 12, 1700316(2018). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201700316

    [47] Veisz L. Contrast improvement of relativistic few-cycle light pulses[M]. //Duarte F J. Coherence and ultrashort pulse laser emission, 14, 305-328(2010).

    [48] Kalashnikov M P, Risse E, Schönnagel H et al. Double chirped-pulse-amplification laser: a way to clean pulses temporally[J]. Optics Letters, 30, 923-925(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000004000005000020000001&idtype=cvips&gifs=Yes

    [49] Jullien A, Kourtev S, Albert O et al. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme[J]. Applied Physics B, 84, 409-414(2006). http://link.springer.com/article/10.1007/s00340-006-2334-7

    [50] Ma J G, Wang J, Qian L J. Amplification of femtosecond lasers: from yesterday to tomorrow[J]. Physics, 47, 772-778(2018).

    [51] Ma J G, Yuan P, Wang J et al. Spatiotemporal noise characterization for chirped-pulse amplification systems[J]. Nature Communication, 6, 6192(2015). http://www.nature.com/articles/ncomms7192/

    [52] Wang J, Yuan P, Ma J G et al. Surface-reflection-initiated pulse-contrast degradation in an optical parametric chirped-pulse amplifier[J]. Optics Express, 21, 15580-15594(2013).

    [53] Wang J, Ma J G, Yuan P et al. Scattering-initiated parametric noise in optical parametric chirped-pulse amplification[J]. Optics Letters, 40, 3396-3399(2015).

    [54] Forget N, Cotel A, Brambrink E et al. Pump-noise transfer in optical parametric chirped-pulse amplification[J]. Optics Letters, 30, 2921-2923(2005). http://www.opticsinfobase.org/ol/abstract.cfm?id=85957

    [55] Wang J, Ma J G, Yuan P et al. Nonlinear beat noise in optical parametric chirped-pulse amplification[J]. Optics Express, 25, 29769-29777(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-24-29769

    [56] Didenko N V, Konyashchenko A V, Lutsenko A P et al. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses[J]. Optics Express, 16, 3178-3190(2008).

    [57] Moulet A, Grabielle S, Cornaggia C et al. Single-shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral interferometry[J]. Optics Letters, 35, 3856-3858(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-22-3856

    [58] Trebino R, DeLong K W, Fittinghoff D N et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating[J]. Review of Scientific Instruments, 68, 3277-3295(1997).

    [59] Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 71, 1929-1960(2000). http://scitation.aip.org/content/aip/journal/rsi/71/5/10.1063/1.1150614

    [61] Nakamura K, Mao H S, Gonsalves A J et al. Diagnostics, control and performance parameters for the BELLA high repetition rate petawatt class laser[J]. IEEE Journal of Quantum Electronics, 53, 1-21(2017).

    [62] Wang J, Ma J G, Yuan P et al. Spatio temporal coherent noise in frequency-domain optical parametric amplification[J]. Optics Express, 26, 10953-10967(2018). http://europepmc.org/abstract/MED/29716024

    [63] Wang J, Ma J G, Wang Y Z et al. Noise filtering in parametric amplification by dressing the seed beam with spatial chirp[J]. Optics Letters, 39, 2439-2442(2014).

    [64] Vetrovec J. Solid-state high-energy laser[J]. Proceedings of SPIE, 4632, 104-114(2002).

    [65] Fan T Y, Ripin D J, Aggarwal R L et al. Cryogenic Yb 3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 448-459(2007).

    [66] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology[J]. Infrared and Laser Engineering, 49, 20201076(2020).

    [67] Kim H, Hay R S, McDaniel S A et al. Lasing of surface-polished polycrystalline Ho∶YAG (yttrium aluminum garnet) fiber[J]. Optics Express, 25, 6725-6731(2017).

    [68] Gao C, Dai J Y, Li F Y et al. Homemade 10-kW ytterbium-doped aluminophosphosilicate fiber for tandem pumping[J]. Chinese Journal of Lasers, 47, 0315001(2020).

    [69] Sheng Q. In-band pumping of Nd-based all-solid-state lasers and its application in nonlinear optical frequency conversion technology[D](2013).

    [70] Bowman S R. Lasers without internal heat generation[J]. IEEE Journal of Quantum Electronics, 35, 115-122(1999).

    [71] Zhou L P, Tang D W, Du X Z et al. High power laser weapons and their cooling systems[J]. Laser & Optoelectronics Progress, 44, 34-38(2007).

    [72] Gao G B, Han L S. Study on thermal management of airborne laser weapon[J]. Aeronautical Manufacturing Technology, 61, 93-96(2018).

    [73] Bergles A E. Recent developments in enhanced heat transfer[J]. Heat and Mass Transfer, 47, 1001-1008(2011). http://link.springer.com/article/10.1007/s00231-011-0872-y

    [74] Liang G T, Mudawar I. Review of spray cooling-part 2: high temperature boiling regimes and quenching applications[J]. International Journal of Heat and Mass Transfer, 115, 1206-1222(2017). http://www.sciencedirect.com/science/article/pii/S0017931017302958

    [75] Wang J X, Guo W, Xiong K et al. Review of aerospace-oriented spray cooling technology[J]. Progress in Aerospace Sciences, 116, 100635(2020). http://www.sciencedirect.com/science/article/pii/S0376042120300476

    [76] Wang T. Study on fundamental and crucial technology about the heat sink unit of laser thermal management system based on microgrooves phase-change cooling[D], 2008.

    [77] Nazir H, Batool M, Osorio F J B et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 129, 491-523(2019). http://www.sciencedirect.com/science/article/pii/S0017931018324578

    [78] Wu J, Long X F. Research status and prospects for thermochemical energy storage[J]. Modern Chemical Industry, 34, 17-21, 23(2014).

    [79] Li W, Chen W, Wang D D. Research and development of thermochemical energy storage based on hydrated salt[J]. Refrigeration and Air-Conditioning, 17, 14-21(2017).

    [80] Feng Y Y, Qin M M, Feng W. High thermal conductivity carbon composites[C]. //the 14th National Annual Meeting of Applied Chemistry in 2015, July 21-24, 2015, Nanchang, China, 92-95(2015).

    [81] Cui Y, Li M, Hu Y J. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities[J]. Journal of Materials Chemistry C, 8, 10568-10586(2020).

    [82] Dang C, Chou J P, Dai B et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 371, 76-78(2021). http://www.ncbi.nlm.nih.gov/pubmed/33384375

    [83] Ji X B, Xu J L, Marthial A A et al. Investigation on heat transfer performance of flat heat pipes with ultra-light porous metal foam wicks[J]. Proceedings of the Chinese Society for Electrical Engineering, 33, 72-78, 14(2013).

    [84] Saha N D, Das P K, Sharma P K. Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 74, 238-250(2014). http://www.sciencedirect.com/science/article/pii/S0017931014001951

    [85] van Erp R, Soleimanzadeh R, Nela L et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 585, 211-216(2020).

    [86] Oberly C E, Bash M, Razidlo B R et al. Integrated power and thermal management system (IPTMS) demonstration including preliminary results of rapid dynamic loading and load shedding at high power[J]. SAE International Journal of Aerospace, 8, 60-71(2015).

    [87] Brown D C. High-peak-power Nd∶glass laser systems[M](1981).

    [88] Williams W H, Auerbach J M, Henesian M A et al. Modeling characterization of the national ignition facility focal spot[J]. Proceedings of SPIE, 3264, 93-104(1998). http://digital.library.unt.edu/ark:/67531/metadc618602/m/

    [89] Fleck J, Morris J, Bliss E. Small-scale self-focusing effects in a high power glass laser amplifier[J]. IEEE Journal of Quantum Electronics, 14, 353-363(1978). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1069799

    [90] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 23, 628-630(1973). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1654772

    [91] Xie L P, Zhao J L, Jing F. Theory of nonlinear hot-image formation in high-power lasers[J]. Proceedings of SPIE, 6028, 60281Z(2005).

    [92] Liao S Y, Gong M L. New development of nonlinearity management in high power fiber lasers and amplifiers[J]. Laser & Optoelectronics Progress, 44, 27-33(2007).

    [93] Poole P, Trendafilov S, Shvets G et al. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems[J]. Optics Express, 21, 26341-26351(2013). http://europepmc.org/abstract/med/24216857

    [94] Manes K R, Spaeth M L, Adams J J et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).

    [95] Robertson A. Laser damage mechanisms in fused fibre components[J]. Proceedings of SPIE, 5647, 557-558(2005).

    [96] Wood R M. Laser-induced damage of optical materials[M](2003).

    [97] Kozlowski M R, Chow R. Role of defects in laser damage of multilayer coatings[J]. Proceedings of SPIE, 2114, 640-649(1994).

    [98] Cheng X B, Shen Z X, Jiao H F et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors[J]. Applied Optics, 50, C357-C363(2011).

    [99] Zhang J L, Jiao H F, Ma B et al. Laser-induced damage of nodular defects in dielectric multilayer coatings[J]. Optical Engineering, 57, 121909(2018). http://proceedings.spiedigitallibrary.org/journals/OE/volume-57/issue-12/121909/Laser-induced-damage-of-nodular-defects-in-dielectric-multilayer-coatings/10.1117/1.OE.57.12.121909.full

    [100] Cheng X B, Ding T, He W Y et al. Using engineered defects to study laser-induced damage in optical thin films with nanosecond pulses[J]. Proceedings of SPIE, 8190, 819002(2011).

    [101] Ma H, Cheng X, Zhang J et al. Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings[J]. Optics Letters, 42, 478-481(2017).

    [102] Cheng X B, Zhang J L, Ding T et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2, e80(2013).

    [103] Cheng X B, Tuniyazi A, Wei Z Y et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 23, 8609-8619(2015).

    [104] Negres R A, Norton M A, Cross D A et al. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation[J]. Optics Express, 18, 19966-19976(2010).

    [105] Spaeth M L, Wegner P J, Suratwala T I et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 69, 265-294(2016).

    [106] Bude J, Miller P E, Shen N et al. Silica laser damage mechanisms, precursors, and their mitigation[J]. Proceedings of SPIE, 9237, 92370S(2014).

    [107] Suratwala T I, Miller P E, Bude J D et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 94, 416-428(2011). http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2010.04112.x/abstract