• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 8, 2598 (2020)
CHEN Nai-dong*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)08-2598-07 Cite this Article
    CHEN Nai-dong. The Discrimination of the Flower Tea of Dendrobium Huoshanense, Dendrobium Officinale and Dendrobium Henanense by a Multi-Step FTIR Method[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2598 Copy Citation Text show less

    Abstract

    The flower tea dried from the flowers of Dendrobium plants was becoming a kind of more and more favorable drink these years. Among them, the flower tea of Dendrobium huoshanense was the most expensive because of its lower yield, better mouthfeel and relative higher pharmaceutical activity comparing with other Dendrobium flower teas. Thus, the flower tea of D. huoshanense was often masqueraded by the cheaper Dendrobium flower tea, such as D. officinale and D. henanense, due to the economic interests. In this paper, a multi-step FTIR method was established to rapidly discriminate the flower tea of Dendrobium huoshanense, Dendrobium officinale and Dendrobium henanese. Different Dendrobium flower tea samples were collected from different manufacturers in July, 2018, then their Attenuated Total Reflection Flouriertransformed Infrared (ATR-FTIR) Spectroscopy and the two-dimensional correlation infrared (2D COS IR) spectra perturbed by temperatures were detected in the range of 4 000~400 cm-1. The second derivative infrared (SD-IR) spectra were calculated from their corresponding ATR-FTIR spectroscopy. The results showed that, although direct discrimination of the Dendrobium flower tea by FTIR spectrum is quite difficult, different intensities and peak positions could be found by analysis of their ATR-FTIR files. The flower tea of D. huoshanese and D. officinale had characteristic peaks at 1 398 and 1 542 cm-1, respectively, while D. henanese obtained characteristic peaks at 1 610, 1 332, 811, 703 and 603 cm-1. Treatment by second derivative can improve the spectral resolution and sensitive remarkably and direct discrimination can be observed in SD-IR spectrum. The three kinds of Dendrobium flower tea could be discriminated by the “M” shape of D. huoshanese in the range of 1 750~1 690 cm-1, by the “W” shape of D. huoshanese and D. henanese, the irregular shape of D. officinale in the range of 1 140~1 080 cm-1, and by the “M” shape of D. huoshanese while the “W” shape of D. officinale and D. henanese in the range of 1 000~930 cm-1. As for the 2D COS IR spectra, in the range of 1 230~1 130 cm-1, the three kinds of flower tea could be discriminated by the auto-peaks at 1 134, 1 155, 1 182, 1 196 and 1 211 cm-1 for D. huoshanese, at 1 186 and 1 210 cm-1 for D. officinale, at 1 186 and 1 210 cm-1 for D. henanese. In addition, There were two positive-correlation cross-peaks at 1 182 and 1 210 cm-1, at 1 135 and 1 181 cm-1, and one negative-correlation cross-peak at 1 197 and 1 155 cm-1 in the 2D COS IR spectrum of the flower tea of D. huoshanese, while no cross-peak was observed in the 2D COS IR spectrum of the flower tea of D. officinale and D. henanese in the range of 1 230~1 130 cm-1. The multi-step FTIR technology involving ATR-FTIR, SD-IR and 2D COS IR could be used to rapidly identify the flower tea of D. huoshanese, D. officinale and D. henanese.
    CHEN Nai-dong. The Discrimination of the Flower Tea of Dendrobium Huoshanense, Dendrobium Officinale and Dendrobium Henanense by a Multi-Step FTIR Method[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2598
    Download Citation