• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111405 (2020)
Xingsheng Wang*, Yuke Huang, Bo Shen, Bin Xu, Jian Zhang, and Jieliang Miao
Author Affiliations
  • College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
  • show less
    DOI: 10.3788/LOP57.111405 Cite this Article Set citation alerts
    Xingsheng Wang, Yuke Huang, Bo Shen, Bin Xu, Jian Zhang, Jieliang Miao. Advances of Short and Ultrashort Pulse Laser Induced Plasma Micromachining[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111405 Copy Citation Text show less
    References

    [1] Reichenbach I G, Bohley M. Sousa F J P, et al. Micromachining of PMMA: manufacturing of burr-free structures with single-edge ultra-small micro end mills[J]. The International Journal of Advanced Manufacturing Technology, 96, 3665-3677(2018).

    [2] Xue B, Geng Y Q, Yan Y D et al. Rapid prototyping of microfluidic chip with burr-free PMMA microchannel fabricated by revolving tip-based micro-cutting[J]. Journal of Materials Processing Technology, 277, 116468(2020).

    [3] Zhu Z W, To S, Tong Z et al. Modulated diamond cutting for the generation of complicated micro/nanofluidic channels[J]. Precision Engineering, 56, 136-142(2019).

    [4] He Z R, Jie X H, Lian W Q. Fabrication of hierarchical micro/nano structure surface on copper by EDM and its hydrophobicity[J]. Journal of Materials Engineering, 48, 144-149(2020).

    [5] Zhao J S, Wang W F, Lü Y M et al[J]. Research on precision EDM technology for closed integral component of difficult-to-cut material Aeronautical Manufacturing Technology, 2017, 22-27.

    [6] Wei Z. Present status of development of micro-electrolysis technology[J]. Machinery, 56, 55-59, 74(2018).

    [7] Wang Z Q, Zhong H, Li Y et al[J]. Micro ECM for injection mold manufacturing of microfluidic chips Electromachining & Mould, 2019, 33-36, 60.

    [8] He L W, Luo L, Meng G et al. Recent progress of novel photolithography technologies[J]. Laser Technology, 43, 30-37(2019).

    [9] Zhu S H, Luo W H, Zeng W B et al. Preparation of free-standing micropatterned keratin films by soft lithography[J]. Acta Chimica Sinica, 77, 533-538(2019).

    [10] Wang X S, Han P D, Giovannini M et al. Modeling of machined depth in laser surface texturing of medical needles[J]. Precision Engineering, 47, 10-18(2017).

    [11] Wang X S, Xu B, Chen Y F et al. Fabrication of micro/nano-hierarchical structures for droplet manipulation via velocity-controlled picosecond laser surface texturing[J]. Optics and Lasers in Engineering, 122, 319-327(2019).

    [12] Shi Y, Xu B, Wu D et al. Research progress on fabrication of functional microfluidic chips using femtosecond laser direct writing technology[J]. Chinese Journal of Lasers, 46, 1000001(2019).

    [13] Zhu S J, Zhang Z Y, Chu S L et al. Research and application of massive micropores water-assisted picosecond laser processing technology[J]. Chinese Journal of Lasers, 47, 0302002(2020).

    [14] Zhang Z B, Hua Y Q, Ye Y X et al. Fabrication of superhydrophobic nickel-aluminum bronze alloy surfaces based on picosecond laser pulses[J]. Chinese Journal of Lasers, 46, 0302013(2019).

    [15] Zhao Q. Research on fabrication method of fused silica microchannel in microfluidic chip[D]. Guiyang: Guizhou University(2019).

    [16] Li M, Zhang H C, Shen Z H et al. Physical analyses of optical breakdown and plasma formation in water induced by laser[J]. Acta Photonica Sinica, 34, 1610-1614(2005).

    [17] Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales:calculation of thresholds, absorption coefficients, and energy density[J]. IEEE Journal of Quantum Electronics, 35, 1156-1167(1999).

    [18] Zhang J, Sugioka K, Midorikawa K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser[J]. Optics Letters, 23, 1486-1488(1998).

    [19] Li C D, Nikumb S. Optical quality micromachining of glass with focused laser-produced metal plasma etching in the atmosphere[J]. Applied Optics, 42, 2383(2003).

    [20] Rahman T U, Rehman Z U, Ullah S et al. Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology[J]. Optics & Laser Technology, 120, 105768(2019).

    [21] Lu X Z, Jiang F, Lei T P et al. Laser-induced-plasma-assisted ablation and metallization on C-plane single crystal sapphire (c-Al2O3)[J]. Micromachines, 8, 300(2017).

    [22] Shao Y, Sun S F, Liao H P et al. Process study on laser induced plasma etching of Pyrex7740 glass[J]. Applied Laser, 37, 704-708(2017).

    [23] Pan C F, Chen K Y, Liu B et al. Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices[J]. Journal of Materials Processing Technology, 240, 314-323(2017).

    [24] Xu S J, Liu B, Pan C F et al. Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices[J]. Journal of Materials Processing Technology, 247, 204-213(2017).

    [25] French P W, Rosowski A, Murphy M et al. Laser induced micro plasma processing of polymer substrates for biomedical implant applications[J]. Proceedings of SPIE, 9657, 96570H(2015).

    [26] Qin S J, Li W J. Micromachining of complex channel systems in 3D quartz substrates using Q-switched Nd∶YAG laser[J]. Applied Physics A: Materials Science & Processing, 74, 773-777(2002).

    [27] Feng C L, Wang H X, Qin S J. Research of the fabrication of micro channels in a fused silica substrate using laser-induced plasma[J]. Laser Technology, 34, 433-435, 451(2010).

    [28] Zhou Y, Gao Y B, Wu B X et al. Deburring effect of plasma produced by nanosecond laser ablation[J]. Journal of Manufacturing Science and Engineering, 136, 024501(2014).

    [29] Peng C P. Study on laser machining micro channels on quartz[D]. Guiyang: Guizhou University(2007).

    [30] Li S X, Bai Z C, Huang Z et al. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma[J]. Acta Physica Sinica, 61, 346-353(2012).

    [31] Wu B X, Shin Y C. A simple two-stage model for the formation and expansion of the plasma induced by high intensity nanosecond laser metal ablation in vacuum[J]. Physics Letters A, 371, 128-134(2007).

    [32] Wu B X, Shin Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments[J]. Journal of Applied Physics, 97, 113517(2005).

    [33] Wu B X. High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics-based predictive model[J]. Applied Physics Letters, 93, 101104(2008).

    [34] Wu B X, Tao S, Lei S T. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments[J]. Applied Surface Science, 256, 4376-4382(2010).

    [35] Li S X, Bai Z C, Huang Z et al. Breakdown model of micro channels fabrication in fused silica substrates by laser-induced plasma[J]. Laser & Infrared, 41, 969-973(2011).

    [36] Li S X, Bai Z C, Qin S J. Research on the fabrication of micro channels in fused silica substrates by nanosecond laser[J]. Laser & Optoelectronics Progress, 49, 041401(2012).

    [37] Wu B X, Shin Y C. A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics[J]. Applied Surface Science, 255, 4996-5002(2009).

    [38] Pallav K, Ehmann K F. Feasibility of laser induced plasma micro-machining (LIP-MM)[M]. ∥Precision Assembly Technologies and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 73-80(2010).

    [39] Pallav K, Han P, Ramkumar J et al. Comparative assessment of the laser induced plasma micromachining and the micro-EDM processes[J]. Journal of Manufacturing Science and Engineering, 136, 011001(2014).

    [40] Pallav K, Saxena I, Ehmann K F. Comparative assessment of the laser-induced plasma micromachining and the ultrashort pulsed laser ablation processes[J]. Journal of Micro and Nano-Manufacturing, 2, 031001(2014).

    [41] Saxena I, Ehmann K F. Multimaterial capability of laser induced plasma micromachining[J]. Journal of Micro and Nano-Manufacturing, 2, 031005(2014).

    [42] Xing Y Q, Zhang K D, Huang P et al. Assessment machining of micro-channel textures on PCD by laser-induced plasma and ultra-short pulsed laser ablation[J]. Optics & Laser Technology, 125, 106057(2020).

    [43] Bhandari S, Murnal M, Cao J et al. Comparative experimental investigation of micro-channel fabrication in Ti alloys by laser ablation and laser-induced plasma micro-machining[J]. Procedia Manufacturing, 34, 418-423(2019).

    [44] Wang X S, Huang Y K, Xing Y Q et al. Fabrication of micro-channels on Al2O3/TiC ceramics using picosecond laser induced plasma micromachining[J]. Journal of Manufacturing Processes, 44, 102-112(2019).

    [45] Saxena I, Ehmann K, Cao J. High throughput microfabrication using laser induced plasma in saline aqueous medium[J]. Journal of Materials Processing Technology, 217, 77-87(2015).

    [46] Saxena I, Wolff S, Cao J. Unidirectional magnetic field assistedlaser induced plasma micro-machining[J]. Manufacturing Letters, 3, 1-4(2015).

    [47] Wolff S, Saxena I. A preliminary study on the effect of external magnetic fields on Laser-Induced Plasma Micromachining (LIPMM)[J]. Manufacturing Letters, 2, 54-59(2014).

    [48] Tang H W, Qiu P, Cao R X et al. Repulsive magnetic field-assisted laser-induced plasma micromachining for high-quality microfabrication[J]. The International Journal of Advanced Manufacturing Technology, 102, 2223-2229(2019).

    [49] Malhotra R, Saxena I, Ehmann K et al. Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes[J]. CIRP Annals, 62, 211-214(2013).

    [50] Saxena I, Malhotra R, Ehmann K et al. High-speed fabrication of microchannels using line-based laser induced plasma micromachining[C]∥ Proceedings of the 8th International Conference on Micro Manufacturing University of Victoria, Victoria, March, 25-28, 2013473.

    [51] Wang X S, Huang Y K, Xu B et al. Comparative assessment of picosecond laser induced plasma micromachining using still and flowing water[J]. Optics & Laser Technology, 119, 105623(2019).

    [52] Wang X S, Huang Y K, Wang X W et al. Experimental investigation and optimization of laser induced plasma micromachining using flowing water[J]. Optics & Laser Technology, 126, 106067(2020).

    [53] Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory[J]. IEEE Journal of Quantum Electronics, 31, 2241-2249(1995).

    [54] Ehteshami M Z, Salehi M R, Abiri E. Development of a numerical model to characterize laser-induced plasmas in aqueous media[J]. Journal of Optics, 19, 095401(2017).

    [55] Saxena I, Ehmann K, Cao J. Laser-induced plasma in aqueous media: numerical simulation and experimental validation of spatial and temporal profiles[J]. Applied Optics, 53, 8283-8294(2014).

    [56] Jiao J, Guo Z. Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates[J]. Applied Physics B, 103, 195-205(2011).

    [57] Jiao J, Guo Z X. Analysis of plasma-mediated ablation in aqueous tissue[J]. Applied Surface Science, 258, 6266-6271(2012).

    [58] Wang X S, Ma C B, Li C Y et al. Influence of pulse energy on machining characteristics in laser induced plasma micro-machining[J]. Journal of Materials Processing Technology, 262, 85-94(2018).

    Xingsheng Wang, Yuke Huang, Bo Shen, Bin Xu, Jian Zhang, Jieliang Miao. Advances of Short and Ultrashort Pulse Laser Induced Plasma Micromachining[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111405
    Download Citation