• Acta Photonica Sinica
  • Vol. 50, Issue 8, 0850201 (2021)
Yaolong LI, Yunquan LIU, and Qihuang GONG
Author Affiliations
  • Institute of Modern Optics, School of Physics, Peking University, Beijing100871, China
  • show less
    DOI: 10.3788/gzxb20215008.0850201 Cite this Article
    Yaolong LI, Yunquan LIU, Qihuang GONG. Progress on the Ultrahigh Spatiotemporal-resolved Photoemission Electron Microscopy (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850201 Copy Citation Text show less
    References

    [1] Qihuang GONG, Wei ZHAO. Ultrafast science to capture ultrafast motions. Ultrafast Science, 2021, 9765859(2021).

    [2] A MERLEN, F LAGUGNé-LABARTHET. Imaging the optical near field in plasmonic nanostructures. Applied Spectroscopy, 68, 1307-1326(2014).

    [3] H PETEK, S OGAWA. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Progress in Surface Science, 56, 239-310(1997).

    [4] M BAUER, A MARIENFELD, M AESCHLIMANN. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Progress in Surface Science, 90, 319-376(2015).

    [5] K FUKUMOTO, K ONDA, Y YAMADA et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Review of Scientific Instruments, 85(2014).

    [6] K FUKUMOTO, Y YAMADA, K ONDA et al. Direct imaging of electron recombination and transport on a semiconductor surface by femtosecond time-resolved photoemission electron microscopy. Applied Physics Letters, 104(2014).

    [7] K FUKUMOTO, M BOUTCHICH, H AREZKI et al. Ultrafast electron dynamics in twisted graphene by femtosecond photoemission electron microscopy. Carbon, 124, 49-56(2017).

    [8] M K L MAN, A MARGIOLAKIS, S DECKOFF-JONES et al. Imaging the motion of electrons across semiconductor heterojunctions. Nature Nanotechnology, 12, 36(2016).

    [9] Lin WANG, Ce XU, Mingyang LI et al. Unraveling spatially heterogeneous ultrafast carrier dynamics of single-layer WSe2 by femtosecond time-resolved photoemission electron microscopy. Nano Letters, 18, 5172-5178(2018).

    [10] A SALA. Imaging at the mesoscale (LEEM, PEEM), 387-425(2020).

    [11] M DABROWSKI, Yanan DAI, H PETEK. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chemical Reviews, 120, 6247-6287(2020).

    [12] Ke WANG, B ECKER, Yongli GAO. Angle-resolved photoemission study on the band structure of organic single crystals. Crystals, 10, 773(2020).

    [13] Quan SUN, Han YU, K UENO et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835-3842(2016).

    [14] R WALLAUER, J REIMANN, N ARMBRUST et al. Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe. Applied Physics Letters, 109, 162102(2016).

    [15] T O MENTES, A LOCATELLI. Angle-resolved X-ray photoemission electron microscopy. Journal of Electron Spectroscopy and Related Phenomena, 185, 323-329(2012).

    [16] H MARCHETTO. High-resolution spectro-microscopic investigations of organic thin film growth(2006).

    [17] F ERNST, M RÜHLE. High-resolution imaging and spectrometry of materials. Springer Science & Business Media(2003).

    [18] M LEHR, B FOERSTER, M SCHMITT et al. Momentum distribution of electrons emitted from resonantly excited individual gold nanorods. Nano Letters, 17, 6606-6612(2017).

    [19] J MADéO, M K L MAN, C SAHOO et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science, 370, 1199(2020).

    [20] M KEUNECKE, C MöLLER, D SCHMITT et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Review of Scientific Instruments, 91(2020).

    [21] Quan SUN, Shuai ZU, H MISAWA. Ultrafast photoemission electron microscopy: Capability and potential in probing plasmonic nanostructures from multiple domains. The Journal of Chemical Physics, 153, 120902(2020).

    [22] B HUBER, S PRES, E WITTMANN et al. Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate. Review of Scientific Instruments, 90, 113103(2019).

    [23] Zhaogang NIE, Run LONG, Linfeng SUN et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. ACS Nano, 8, 10931-10940(2014).

    [24] Dezheng SUN, Yi RAO, G A REIDER et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Letters, 14, 5625-5629(2014).

    [25] Linqiu LI, Mingfu LIN, Xiang ZHANG et al. Phonon-suppressed auger scattering of charge carriers in defective two-dimensional transition metal dichalcogenides. Nano Letters, 19, 6078-6086(2019).

    [26] Xiaoping HONG, J KIM, Sufei SHI et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 9, 682(2014).

    [27] D LIEN, S Z UDDIN et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 364, 468(2019).

    [28] P HEIN, A STANGE, K HANFF et al. Momentum-resolved hot electron dynamics at the 2H-MoS2 surface. Physical Review B, 94, 205406(2016).

    [29] M CINCHETTI, A GLOSKOVSKII, S A NEPJIKO et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Physical Review Letters, 95(2005).

    [30] A KUBO, K ONDA, H PETEK et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Letters, 5, 1123-1127(2005).

    [31] A KUBO, N PONTIUS, H PETEK. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Letters, 7, 470-475(2007).

    [32] M AESCHLIMANN, M BAUER, D BAYER et al. Adaptive subwavelength control of nano-optical fields. Nature, 446, 301(2007).

    [33] D PODBIEL, P KAHL, A MAKRIS et al. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Letters, 17, 6569-6574(2017).

    [34] Yanan DAI, M DABROWSKI, V A APKARIAN et al. Ultrafast microscopy of spin-momentum-locked surface plasmon polaritons. ACS Nano, 12, 6588-6596(2018).

    [35] G SPEKTOR, D KILBANE, A K MAHRO et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science, 355, 1187(2017).

    [36] T J DAVIS, D JANOSCHKA, P DREHER et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368(2020).

    [37] Yanan DAI, Zhikang ZHOU, A GHOSH et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [38] Yaolong LI, Quan SUN, Shuai ZU et al. Correlation between near-field enhancement and dephasing time in plasmonic dimers. Physical Review Letters, 124, 163901(2020).

    [39] F SCHERTZ, M SCHMELZEISEN, M KREITER et al. Field emission of electrons generated by the near field of strongly coupled plasmons. Physical Review Letters, 108, 237602(2012).

    [40] Quan SUN, K UENO, Han YU et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Science & Applications, 2(2013).

    [41] Han YU, Quan SUN, K UENO et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano, 10, 10373-10381(2016).

    [42] B FOERSTER, M HARTELT, S S E COLLINS et al. Interfacial states cause equal decay of plasmons and hot electrons at gold–metal oxide interfaces. Nano Letters, 20, 3338-3343(2020).

    [43] P KAHL, S WALL, C WITT et al. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics, 9, 1401-1407(2014).

    [44] C E TALLEY, J B JACKSON, C OUBRE et al. Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Letters, 5, 1569-1574(2005).

    [45] Xu SHI, K UENO, T OSHIKIRI et al. Enhanced water splitting under modal strong coupling conditions. Nature Nanotechnology, 13, 953-958(2018).

    [46] C SONNICHSEN, T FRANZL, T WILK et al. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters, 88(2002).

    [47] B FOERSTER, V A SPATA, E A CARTER et al. Plasmon damping depends on the chemical nature of the nanoparticle interface. Science Advances, 5(2019).

    [48] T HANKE, G KRAUSS, D TRäUTLEIN et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Physical Review Letters, 103, 257404(2009).

    [49] B LAMPRECHT, J R KRENN, A LEITNER et al. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Physical Review Letters, 83, 4421(1999).

    [50] K FUKUMOTO, Y YAMADA, S KOSHIHARA et al. Lifetimes of photogenerated electrons on a GaAs surface affected by nanostructural defects. Applied Physics Express, 8, 101201(2015).

    [51] E L WONG, A J WINCHESTER, V PAREEK et al. Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field. Science Advances, 4(2018).

    [52] L WITTENBECHER, B E VIñAS, J VOGELSANG et al. Unraveling the ultrafast hot electron dynamics in semiconductor nanowires. ACS Nano, 15, 1133-1144(2021).

    [53] Yaolong LI, Wei LIU, Yunkun WANG et al. Ultrafast electron cooling and decay in monolayer ws2 revealed by time- and energy-resolved photoemission electron microscopy. Nano Letters, 20, 3747-3753(2020).

    [54] Huan LIU, Chong WANG, Zhengguang ZUO et al. Direct visualization of exciton transport in defective few-layer WS2 by ultrafast microscopy. Advanced Materials, 32, 1906540(2020).

    [55] Yunkun WANG, Yaolong LI, Yunan GAO. Progress on defect and related carrier dynamics in two-dimensional transition metal chalcogenides. Chinese Optics, 14, 18-42(2021).

    [56] Wei LIU, Haoran YU, Yaolong LI et al. Mapping trap dynamics in a CsPbBr3 single-crystal microplate by ultrafast photoemission electron microscopy. Nano Letters, 21, 2932-2938(2021).

    Yaolong LI, Yunquan LIU, Qihuang GONG. Progress on the Ultrahigh Spatiotemporal-resolved Photoemission Electron Microscopy (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850201
    Download Citation