• Acta Physica Sinica
  • Vol. 68, Issue 4, 040301-1 (2019)
Yu-Cheng Wang1、2、3、*, Xiong-Jun Liu2、6, and Shu Chen4、5、6、*
Author Affiliations
  • 1Shenzhen Institute for Quantum Science and Engineering, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
  • 2International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
  • 3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 5School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
  • show less
    DOI: 10.7498/aps.68.20181927 Cite this Article
    Yu-Cheng Wang, Xiong-Jun Liu, Shu Chen. Properties and applications of one dimensional quasiperiodic lattices[J]. Acta Physica Sinica, 2019, 68(4): 040301-1 Copy Citation Text show less
    IPR of ground states as a function of for this system with and . The left and right insets show the distribution of the ground state with and respectively.基态的倒参与率随的变化,这里固定和. 左右的插图分别展示了和时系统的基态波函数的分布
    Fig. 1. IPR of ground states as a function of for this system with and . The left and right insets show the distribution of the ground state with and respectively. 基态的倒参与率随 的变化,这里固定 和 . 左右的插图分别展示了 和 时系统的基态波函数的分布
    Sketch of the quasiperiodic lattice realized in the experiment. J describes the hopping between the nearest-neighbor sites of the primary lattice and is the maximum shift of the on-site energy induced by the secondary lattice.实验实现准周期晶格的原理示意图. J 描述的是主晶格最近邻格点之间的跃迁, 是由次晶格导致的在位能最大的差别
    Fig. 2. Sketch of the quasiperiodic lattice realized in the experiment. J describes the hopping between the nearest-neighbor sites of the primary lattice and is the maximum shift of the on-site energy induced by the secondary lattice. 实验实现准周期晶格的原理示意图. J 描述的是主晶格最近邻格点之间的跃迁, 是由次晶格导致的在位能最大的差别
    Schematics of the experiment. Schematic illustration of the initial CDW state and the states reached after time evolution in the localized, intermediate, and extended phase, respectively: (a) Initial state: CDW state (, ); (b) localized phase (, ); (c) the intermediate phase, extended and localized states coexist at different energies (, ); (d) extended phase (, ).实验原理图. 制备的初始CDW态,以及在局域、中间和扩展相中,经过一段时间演化后,分别对应的系统的末态 (a)初态分布,制备为CDW态(根据定义,有, ); (b)局域态(, );(c)中间态,对应于不同的能量存在局域态和扩展态(, ); (d)扩展态(, )
    Fig. 3. Schematics of the experiment. Schematic illustration of the initial CDW state and the states reached after time evolution in the localized, intermediate, and extended phase, respectively: (a) Initial state: CDW state ( , ); (b) localized phase ( , ); (c) the intermediate phase, extended and localized states coexist at different energies ( , ); (d) extended phase ( , ). 实验原理图. 制备的初始CDW态,以及在局域、中间和扩展相中,经过一段时间演化后,分别对应的系统的末态 (a)初态分布,制备为CDW态(根据定义,有 , ); (b)局域态( , );(c)中间态,对应于不同的能量存在局域态和扩展态( , ); (d)扩展态( , )
    (a) as a function of . Here we use 50 samples for and , 30 samples for , and 20 samples for ; (b) averaged entanglement entropy and versus . Here we use 500 samples for and , 100 samples for and 30 samples for . The interaction strength is fixed at . Here a sample is specified by choosing an initial phase[21].(a)随的变化. 当系统尺寸为和时用的样品数是, 当时用的样品数是, 当时用的样品数是; (b)平均的纠缠熵和随的变化. 当和时用个样品, 当时用个样品, 当时用个样品. 相互作用强度始终被固定为. 这里一个样品指的是任选一个初相位[21]
    Fig. 4. (a) as a function of . Here we use 50 samples for and , 30 samples for , and 20 samples for ; (b) averaged entanglement entropy and versus . Here we use 500 samples for and , 100 samples for and 30 samples for . The interaction strength is fixed at . Here a sample is specified by choosing an initial phase [21]. (a) 随 的变化. 当系统尺寸为 和 时用的样品数是 , 当 时用的样品数是 , 当 时用的样品数是 ; (b)平均的纠缠熵 和 随 的变化. 当 和 时用 个样品, 当 时用 个样品, 当 时用 个样品. 相互作用强度始终被固定为 . 这里一个样品指的是任选一个初相位 [21]
    Log-log plot of the width vs time t for several values of in the AA model with , and .AA模型中取不同的时随时间t的变化的对数-对数图, 这里固定, 跃迁强度, 以及系统尺寸
    Fig. 5. Log-log plot of the width vs time t for several values of in the AA model with , and . AA模型中取不同的 时 随时间t的变化的对数-对数图, 这里固定 , 跃迁强度 , 以及系统尺寸
    The mean information entropy as a function of for this system with and . The left up inset shows the derivative of the mean information entropy as a function of with fixed (blue), (red), and (green). The right down inset shows the derivative of the mean information entropy as a function of with (blue), (red), and (green)[55].固定和, 平均信息熵随周期的变化. 左上角的插图展示了平均纠缠熵的导数随周期的变化, 这里固定(蓝色), (红色), 和(绿色). 右下角的插图展示了平均纠缠熵随的变化, 这里分别固定(蓝色), (红色), (绿色)[55]
    Fig. 6. The mean information entropy as a function of for this system with and . The left up inset shows the derivative of the mean information entropy as a function of with fixed (blue), (red), and (green). The right down inset shows the derivative of the mean information entropy as a function of with (blue), (red), and (green)[55]. 固定 和 , 平均信息熵随周期 的变化. 左上角的插图展示了平均纠缠熵的导数随周期 的变化, 这里固定 (蓝色), (红色), 和 (绿色). 右下角的插图展示了平均纠缠熵随 的变化, 这里分别固定 (蓝色), (红色), (绿色)[55]
    The mean information entropy versus both and for the system with [55].固定系统尺寸, 平均信息熵随和的变化[55]
    Fig. 7. The mean information entropy versus both and for the system with [55]. 固定系统尺寸 , 平均信息熵随 和 的变化[55]
    Evolution of Loschmidt echo in a long time with different s. The initial state is chosen to be the ground state of the Hamiltonian with ((a), (b))and ((c), (d))[66].取不同值时Loschmidt echo的演化. 初态选准周期势强度为 ((a), (b))和 ((c), (d))的哈密顿量的基态[66]
    Fig. 8. Evolution of Loschmidt echo in a long time with different s. The initial state is chosen to be the ground state of the Hamiltonian with ((a), (b))and ((c), (d))[66]. 取不同值时Loschmidt echo的演化. 初态选准周期势强度为 ((a), (b))和 ((c), (d))的哈密顿量的基态[66]
    The behavior of versus for the system with , and : (a) Different colors correspond to different s and the initial state is chosen to be the ground state of the initial Hamiltonian; (b) different choice of initial state with standing for the eigenstates of the initial Hamiltonian . A clear boundary can be seen at . Here we choose [66].固定系统参数, 和时随的变化: (a)不同的颜色对应不同的值, 这里的初态是初始哈密顿量的基态; (b) 选取不同的初态, 表示初始哈密顿量的第n个本征态. 在处, 可以清晰地看到一个相边界. 这里固定[66]
    Fig. 9. The behavior of versus for the system with , and : (a) Different colors correspond to different s and the initial state is chosen to be the ground state of the initial Hamiltonian; (b) different choice of initial state with standing for the eigenstates of the initial Hamiltonian . A clear boundary can be seen at . Here we choose [66]. 固定系统参数 , 和 时 随 的变化: (a)不同的颜色对应不同的 值, 这里的初态是初始哈密顿量的基态; (b) 选取不同的初态, 表示初始哈密顿量的第n个本征态. 在 处, 可以清晰地看到一个相边界. 这里固定 [66]
    (a) MIPR as a function of the incommensurate potential strength at two p-wave pairing strength and . Here use ; (b) phase diagram of this system with a p-wave pairing strength and incommensurate potential strength . I: extended phase, II: critical phase and III: localized phase. Here fix .(a) 固定两个p波配对强度和时,MIPR随准周期势强度的变化,这里用的系统尺寸是; (b) 系统随p波配对强度和准周期势强度变化的相图,I:扩展相,II:临界相,III:局域相. 这里固定
    Fig. 10. (a) MIPR as a function of the incommensurate potential strength at two p-wave pairing strength and . Here use ; (b) phase diagram of this system with a p-wave pairing strength and incommensurate potential strength . I: extended phase, II: critical phase and III: localized phase. Here fix .  (a) 固定两个p波配对强度 和 时,MIPR随准周期势强度 的变化,这里用的系统尺寸是 ; (b) 系统随p波配对强度 和准周期势强度 变化的相图,I:扩展相,II:临界相,III:局域相. 这里固定
    (a) Energy spectra of this system with and under OBC. The distributions of (b) and (c) for the lowest excitation with different [16].(a) 在开边界条件下, 固定和时系统的能谱; (b), (c)不同的值时最低激发模的((b))和((c))的分布[16]
    Fig. 11. (a) Energy spectra of this system with and under OBC. The distributions of (b) and (c) for the lowest excitation with different [16].  (a) 在开边界条件下, 固定 和 时系统的能谱; (b), (c)不同的 值时最低激发模的 ((b))和 ((c))的分布[16]
    IPR((a))and MIPR((b)) as a function of and with fixed ; IPR((c)) and MIPR((d)) as a function of and with fixed ; IPR((e)) and MIPR((f)) as a function of and with fixed . The lattice size is and [91].第N个本征态的IPR((a))和MIPR((b))随和的变化, 这里固定; 第N个本征态的IPR((c))和MIPR((d))随和的变化, 这里固定; 第N个本征态的IPR((e))和MIPR((f))作为和的函数, 这里固定. 其他参数是和[91]
    Fig. 12. IPR((a))and MIPR((b)) as a function of and with fixed ; IPR((c)) and MIPR((d)) as a function of and with fixed ; IPR((e)) and MIPR((f)) as a function of and with fixed . The lattice size is and [91].  第N个本征态的IPR((a))和MIPR((b))随 和 的变化, 这里固定 ; 第N个本征态的IPR((c))和MIPR((d))随 和 的变化, 这里固定 ; 第N个本征态的IPR((e))和MIPR((f))作为 和 的函数, 这里固定 . 其他参数是 和 [91]
    (a) versus for different lattice size with fixed ; (b) DOS with as a function of energy for various values of incommensurate potential strength [91].(a) 不同晶格尺寸时, 随的变化, 这里固定; (b)固定, 取不同的准周期势强度时系统的态密度随能量的变化[91]
    Fig. 13. (a) versus for different lattice size with fixed ; (b) DOS with as a function of energy for various values of incommensurate potential strength [91].  (a) 不同晶格尺寸 时, 随 的变化, 这里固定 ; (b)固定 , 取不同的准周期势强度 时系统的态密度随能量的变化[91]
    Yu-Cheng Wang, Xiong-Jun Liu, Shu Chen. Properties and applications of one dimensional quasiperiodic lattices[J]. Acta Physica Sinica, 2019, 68(4): 040301-1
    Download Citation