• Journal of Semiconductors
  • Vol. 45, Issue 4, 042503 (2024)
Xueqiang Ji1, Jinjin Wang1, Song Qi1, Yijie Liang1..., Shengrun Hu1, Haochen Zheng1, Sai Zhang1, Jianying Yue1, Xiaohui Qi1, Shan Li2, Zeng Liu2,*, Lei Shu3, Weihua Tang2,** and Peigang Li1,***|Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuits & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 3Beijing Microelectronics Technology Institute, Beijing 100076, China
  • show less
    DOI: 10.1088/1674-4926/45/4/042503 Cite this Article
    Xueqiang Ji, Jinjin Wang, Song Qi, Yijie Liang, Shengrun Hu, Haochen Zheng, Sai Zhang, Jianying Yue, Xiaohui Qi, Shan Li, Zeng Liu, Lei Shu, Weihua Tang, Peigang Li. Improvement of Ga2O3 vertical Schottky barrier diode by constructing NiO/Ga2O3 heterojunction[J]. Journal of Semiconductors, 2024, 45(4): 042503 Copy Citation Text show less
    References

    [1] J Y Tsao, S Chowdhury, M A Hollis et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv Elect Materials, 4, 1600501(2018).

    [2] E A Jones, F F Wang, D Costinett. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerg Sel Top Power Electron, 4, 707(2016).

    [3] S Madhusoodhanan, S Sandoval, Y Zhao et al. A highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications. IEEE Electron Device Lett, 38, 1105(2017).

    [4] J Millán, P Godignon, X Perpiñà et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron, 29, 2155(2014).

    [5] Z Liu, P G Li, Y S Zhi et al. Review of gallium oxide based field-effect transistors and Schottky barrier diodes. Chin Phys B, 28, 017105(2019).

    [6] S J Pearton, F Ren, M Tadjer et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J Appl Phys, 124, 220901(2018).

    [7] S J Pearton, J C Yang, P H IV Cary et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 5, 011301(2018).

    [8] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [9] E G Víllora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [10] C X Xu, L Y Shen, H Liu et al. High-quality β-Ga2O3 films with influence of growth temperature by pulsed laser deposition for solar-blind photodetectors. J Electron Mater, 50, 2043(2021).

    [11] M J Tadjer, M A Mastro, N A Mahadik et al. Structural, optical, and electrical characterization of monoclinic β-Ga2O3 grown by MOVPE on sapphire substrates. J Electron Mater, 45, 2031(2016).

    [12] Z Y Yan, S Li, J Y Yue et al. A spiro-MeOTAD/Ga2O3/Si p-i-n junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers. ACS Appl Mater Interfaces, 13, 57619(2021).

    [13] X Q Ji, C Lu, Z Y Yan et al. A review of gallium oxide-based power Schottky barrier diodes. J Phys D Appl Phys, 55, 443002(2022).

    [14] F Ren, J C Yang, C Fares et al. Device processing and junction formation needs for ultra-high power Ga2O3 electronics. MRS Commun, 9, 77(2019).

    [15] L P Dong, S Zhou, K W Pu et al. Electrical contacts in monolayer Ga2O3 field-effect tansistors. Appl Surf Sci, 564, 150386(2021).

    [16] E Farzana, Z Zhang, P K Paul et al. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl Phys Lett, 110, 202102(2017).

    [17] C Hou, R M Gazoni, R J Reeves et al. Oxidized metal Schottky contacts on (010) β-Ga2O3. IEEE Electron Device Lett, 40, 337(2019).

    [18] M E Ingebrigtsen, A Y Kuznetsov, B G Svensson et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 7, 022510(2019).

    [19] B R Tak, S Dewan, A Goyal et al. Point defects induced work function modulation of β-Ga2O3. Appl Surf Sci, 465, 973(2019).

    [20] X Lu, Y X Deng, Y L Pei et al. Recent advances in NiO/Ga2O3 heterojunctions for power electronics. J Semicond, 44, 061802(2023).

    [21] J S Li, C C Chiang, X Y Xia et al. Superior high temperature performance of 8 kV NiO/Ga2O3 vertical heterojunction rectifiers. J Mater Chem C, 11, 7750(2023).

    [22] H H Gong, X H Chen, Y Xu et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode. Appl Phys Lett, 117, 3(2020).

    [23] H X Luo, X D Zhou, Z M Chen et al. Fabrication and characterization of high-voltage NiO/β-Ga2O3 heterojunction power diodes. IEEE Trans Electron Devices, 68, 3991(2021).

    [24] Q M He, W X Mu, H Dong et al. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl Phys Lett, 110, 093503(2017).

    [25] A F M Anhar Uddin Bhuiyan, Z X Feng, J M Johnson et al. MOCVD epitaxy of ultrawide bandgap β-(AlxGa1–x)2O3 with high-Al composition on (100) β-Ga2O3 substrates. Cryst Growth Des, 20, 6722(2020).

    [26] F Alema, B Hertog, A Osinsky et al. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 475, 77(2017).

    [27] W Cui, D Y Guo, X L Zhao et al. Solar-blind photodetector based on Ga2O3 nanowires array film growth from inserted Al2O3 ultrathin interlayers for improving responsivity. RSC Adv, 6, 100683(2016).

    [28] H L Wei, Z W Chen, Z P Wu et al. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy. AIP Adv, 7, 115216(2017).

    [29] X Q Ji, J Y Yue, X H Qi et al. Homoepitaxial Si-doped Gallium Oxide films by MOCVD with tunable electron concentrations and electrical properties. Vacuum, 210, 111902(2023).

    [30] E B Yakimov, A Y Polyakov, I V Shchemerov et al. Photosensitivity of Ga2O3 Schottky diodes: Effects of deep acceptor traps present before and after neutron irradiation. APL Mater, 8, 2(2020).

    [31] Y X Shen, Q Feng, K Zhang et al. The investigation of temperature dependent electrical characteristics of Au/Ni/β-(InGa)2O3 Schottky diode. Superlattices Microstruct, 133, 106179(2019).

    [32] S Oh, G Yang, J Kim. Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol, 6, Q3022(2016).

    [33] S Z Luan, L P Dong, X F Ma et al. The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode. J Alloys Compd, 812, 152026(2020).

    Xueqiang Ji, Jinjin Wang, Song Qi, Yijie Liang, Shengrun Hu, Haochen Zheng, Sai Zhang, Jianying Yue, Xiaohui Qi, Shan Li, Zeng Liu, Lei Shu, Weihua Tang, Peigang Li. Improvement of Ga2O3 vertical Schottky barrier diode by constructing NiO/Ga2O3 heterojunction[J]. Journal of Semiconductors, 2024, 45(4): 042503
    Download Citation