• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 6, 667 (2018)
Jun MAO* and Lei MA
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2018.06.005 Cite this Article
    MAO Jun, MA Lei. Influence of entanglement swapping on quantum small-world networks entanglement percolation in noisy scenario[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 667 Copy Citation Text show less
    References

    [1] Komar P, Kessler E M, Bishof M, et al. A quantum network of clocks [J]. Nature Physics, 2014, 10(8): 582-587.

    [2] Pfaff W, Hensen B J, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits [J]. Science, 2014, 345(6196): 532-535.

    [3] Wilde M M. Quantum Information Theory [M]. Cambridge: Cambridge University Press, 2013.

    [4] Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: An outlook [J]. Science, 2013, 339(6124): 1169-1174.

    [5] Giuseppe V, Davide B, Daniele D, et al. Experimental satellite quantum communications [J]. Physical Review Letters, 2015, 115(4): 040502.

    [6] Ma X S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward [J]. Nature, 2012, 489(7415): 269-273.

    [7] Lapeyre Jr G J, Wehr J, Lewenstein M. Enhancement of entanglement percolation in quantum networks via lattice transformations [J]. Physical Review A, 2009, 79(4): 042324.

    [8] Broadfoot S, Dorner U, Jaksch D. Entanglement percolation with bipartite mixed states [J]. Europhysics Letters, 2009, 88(5): 50002.

    [9] Cuquet M, Calsamiglia J. Entanglement percolation in quantum complex networks [J]. Physical Review Letters, 2009, 103(24): 240503.

    [13] Veldhorst M, Hwang J C C, et al. An addressable quantum dot qubit with fault-tolerant control-fidelity [J]. Nature Nanotechnology, 2014, 9(12): 981-985.

    [14] Shao L H, Xi Z, Fan H, et al. Fidelity and trace-norm distances for quantifying coherence [J]. Physical Review A, 2015, 91(4): 042120.

    [15] Rajarshi P, Somshubhro B, Sibasish G, et al. Entanglement sharing through noisy qubit channels: One-shot optimal singlet fraction [J]. Physical Review A, 2014, 90(5): 052304.

    [16] Serrano M , Boguná M. Percolation and epidemic thresholds in clustered networks [J]. Physical Review Letters, 2006, 97(8): 088701.

    [17] Liu Xueming, Pan Linqiang, Stanley H E, et al. Controllability of giant connected components in a directed network [J]. Physical Review E, 2017, 95(4): 042318.

    [18] Cuquet M, Calsamiglia J. Limited-path-length entanglement percolation in quantum complex networks [J]. Physical Review A, 2011, 83(3): 032319.

    [19] Titze M, Bahrdt J, Wustefeld G, et al. Symplectic tracking through straight three dimensional fields by a method of generating functions [J]. Physical Review Special Topics-Accelerators and Beams, 2016, 19(1): 014001.

    [20] Langer N, Pedroni A, Jncke L. The problem of thresholding in small-world network analysis [J]. PloS One, 2013, 8(1): e53199.

    [21] Li Wenlin, Li Chong, Song Heshan, et al. Quantum synchronization and quantum state sharing in an irregular complex network [J]. Physical Review E, 2017, 95(2): 022204.

    [22] Su X, Tian C, Deng X, et al. Quantum entanglement swapping between two multipartite entangled states [J]. Physical Review Letters, 2016, 117(24): 240503.

    [23] Song W, Yang M, Cao Z L. Purifying entanglement of noisy two-qubit states via entanglement swapping [J]. Physical Review A, 2014, 89(1): 014303.

    [24] Zanardi P, Quan H T, Wang X, et al. Mixed-state fidelity and quantum criticality at finite temperature [J]. Physical Review A, 2007, 75(3): 032109.

    MAO Jun, MA Lei. Influence of entanglement swapping on quantum small-world networks entanglement percolation in noisy scenario[J]. Chinese Journal of Quantum Electronics, 2018, 35(6): 667
    Download Citation