• Infrared and Laser Engineering
  • Vol. 47, Issue 10, 1003001 (2018)
Zhao Yue1、2, Zhang Jinchuan1, Liu Chuanwei1、2, Wang Lijun1、2, Liu Junqi1、2, and Liu Fengqi1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1003001 Cite this Article
    Zhao Yue, Zhang Jinchuan, Liu Chuanwei, Wang Lijun, Liu Junqi, Liu Fengqi. Progress in mid-and far-infrared quantum cascade laser(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001 Copy Citation Text show less
    References

    [1] Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication[J]. Optics Express, 2009, 17(6): 4355-4359.

    [2] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser [J]. Science, 1994, 264(5158): 553-556.

    [3] Faist J, Capasso F, Sirtori C, et al. Room temperature mid-infrared quantum cascade lasers[J]. Electronics Letters, 1996, 32(6): 560-561.

    [4] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J]. Science, 2002, 295(5553): 301-305.

    [5] Faist J, Gmachl C, Capasso F, et al, Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672.

    [6] Blaser S, Yarekha D, Hvozdara L, et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at 5: 4 m [J]. Applied Physics Letters, 2005, 86: 1-3.

    [7] Liu F Q, Zhang Y Z, Zhang Q S, et al. High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers[J]. Semiconductor Science and Technology, 2000, 15(12): L44.

    [8] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 2011, 98(18): 181102.

    [9] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 2012, 492(7428): 229-233.

    [10] Yao D Y, Zhang J C, Liu F Q, et al. Surface emitting quantum cascade lasers operating in continuous-wave mode above 70 ℃ at λ≈4.6 μm[J]. Applied Physics Letters, 2013, 103(4): 041121.

    [11] Faist J. Quantum Cascade Lasers[M]. Oxford: OUP Oxford, 2013.

    [12] Lyakh A, Patel C K N, Tsvid E, et al. Progress in high-power continuous-wave quantum cascade lasers[J]. Applied Optics, 2017, 56(31): H15.

    [13] Bai Y, Darvish S, Slivken S, et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 2008, 92(10): 101105.

    [14] Bai Y, Slivken S, Darvish S R, et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 2008, 93(2): 021103.

    [15] Razeghi M, Slivken S, Bai Y, et al. High power quantum cascade lasers[J]. New Journal of Physics, 2009, 11(12): 125017.

    [16] Bai Y, Slivken S, Darvish S R, et al. High power broad area quantum cascade lasers[J]. Applied Physics Letters, 2009, 95(22): 221104.

    [17] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly temperature insensitive quantum cascade lasers [J]. Applied Physics Letters, 2010, 97(25): 251104.

    [18] Lyakh A, Maulini R, Tsekoun A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14): 141113.

    [19] Lyakh A, Pfluügl C, Diehl L, et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm[J]. Applied Physics Letters, 2008, 92(11): 111110.

    [20] Lyakh A, Maulini R, Tsekoun A, et al. Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power [J]. Optics Express, 2012, 20(4): 4382-4388.

    [21] Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency[J]. Optics Express, 2012, 20(22): 24272-24279.

    [22] Maulini R, Lyakh A, Tsekoun A, et al. λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature[J]. Optics Express, 2011, 19(18): 17203-17211.

    [23] Lyakh A, Suttinger M, Go R, et al. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 2016, 109(12): 121109.

    [24] Lu Q Y, Bai Y, Bandyopadhyay N, et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2011, 98(18): 181106.

    [25] Liu Yinghui, Zhang Jinchuan, Jiang Jianmin, et al. Development of surface grating distributed feedback quantum cascade laser for high output power and low threshold current density [J]. Chinese Physics Letters, 2015, 32(2): 024202.

    [26] Zhang J, Liu F, Tan S, et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 2012, 100(11): 112105.

    [27] Zhang J, Liu F, Yao D, et al. High power buried sampled grating distributed feedback quantum cascade lasers[J]. Journal of Applied Physics, 2013, 113(15): 153101.

    [28] Slivken S, Bandyopadhyay N, Tsao S, et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 2012, 100(26): 261112.

    [29] Lyakh A, Zory P, D′Souza M, et al. Substrate-emitting, distributed feedback quantum cascade lasers [J]. Applied Physics Letters, 2007, 91(18): 181116.

    [30] Zhang J C, Yao D Y, Zhuo N, et al. Directional collimation of substrate emitting quantum cascade laser by nanopores arrays [J]. Applied Physics Letters, 2014, 104(5): 052109.

    [31] Cheng F M, Zhang J C, Jia Z W, et al. High power substrate-emitting quantum cascade laser with a symmetric mode [J]. IEEE Photonics Technology Letters, 2017, 29(22): 1994-1997.

    [32] Zhao Y, Yan F, Zhang J, et al. Broad area quantum cascade lasers operating in pulsed mode above 100 ℃ λ~4.7 μm [J]. Journal of Semiconductors, 2017, 38(7): 74-77.

    [33] Botez D, Scifres D R. Diode Laser Arrays Vol. 14[M]. Cambridge: Cambridge University Press, 2005.

    [34] Kirch J D, Chang C C, Boyle C, et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(6): 061113.

    [35] Lyakh A, Maulini R, Tsekoun A, et al. Continuous wave operation of buried heterostructure 4.6 m quantum cascade laser Y-junctions and tree arrays [J]. Optics Express, 2014, 22(1): 1203-1208.

    [36] Leger J R. Lateral mode control of an AlGaAs laser array in a Talbot cavity[J]. Applied Physics Letters, 1989, 55(4): 334-336.

    [37] Wang L, Zhang J, Jia Z, et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity [J]. Optics Express, 2016, 24(26): 30275-30281.

    [38] Jia Z, Wang L, Zhang J, et al. Phase-locked array of quantum cascade lasers with an intracavity spatial filter [J]. Applied Physics Letters, 2017, 111(6): 061108.

    [39] Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers [J]. Applied Physics Letters, 2015, 106(9): 941.

    [40] Sergachev I, Maulini R, Bismuto A, et al. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature [J]. Optics Express, 2016, 24(17): 19063-19071.

    [41] Paiella R, Martini R, Capasso F, et al. High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers [J]. Applied Physics Letters, 2001, 79(16): 2526-2528.

    [42] Calvar A, Amanti M, Renaudat St-Jean M, et al. High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line [J]. Applied Physics Letters, 2013, 102(18): 181114.

    [43] Hinkov B, Hugi A, Beck M, et al. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers [J]. Optics Express, 2016, 24(4): 3294-3312.

    [44] Blaser S, Hofstetter D, Beck M, et al. Free-space optical data link using Peltier-cooled quantum cascade laser [J]. Electronics Letters, 2001, 37(12): 778-780.

    [45] Martini R, Paiella R, Gmachl C, et al. High-speed digital data transmission using mid-infrared quantum cascade lasers [J]. Electronics Letters, 2001, 37(21): 1290-1292.

    [46] Liu C W, Zhai S Q, Zhang J C, et al. Free-space communication based on quantum cascade laser [J]. Journal of Semiconductors, 2015, 36(9): 094009.

    [47] Pang X, Ozolins O, Schatz R, et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature[J]. Optics Letters, 2017, 42(18): 3646-3649.

    [48] Luzhanskiy E, Choa F S, Merritt S, et al. Low size, weight and power concept for mid-wave infrared optical communication transceivers based on Quantum Cascade Lasers.GSFC-E-DAA-TN27691[R/OL].[2015-11-20].https://ntrs.nasa.gov/search.jsp R=20150021900, 2015.

    [49] Villares G, Hugi A, Blaser S, et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs [J]. Nature Communications, 2014, 5: 5192.

    [50] Villares G, Wolf J, Kazakov D, et al. On-chip dual-comb based on quantum cascade laser frequency combs [J]. Applied Physics Letters, 2015, 107(25): 251104.

    [51] Jouy P, Wolf J M, Bidaux Y, et al. Dual comb operation of λ~8.2 μm quantum cascade laser frequency comb with 1 W optical power[J]. Applied Physics Letters, 2017, 111(14): 141102.

    CLP Journals

    [1] Xinrui Xu, Xiangxiang Meng, Shichen Wu, Jianlong Wang, Suping Bai. Development of optical antenna for middle infrared laser communication terminal[J]. Infrared and Laser Engineering, 2021, 50(6): 20200331

    [2] Ke Wang, Jun Cai, Yu Ding, Qili Hu, Le Zhang. Study on polarization beam combining experimental of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 2022, 51(8): 20210679

    Zhao Yue, Zhang Jinchuan, Liu Chuanwei, Wang Lijun, Liu Junqi, Liu Fengqi. Progress in mid-and far-infrared quantum cascade laser(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001
    Download Citation