• Photonic Sensors
  • Vol. 1, Issue 1, 72 (2011)
[in Chinese]* and [in Chinese]
Author Affiliations
  • School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116023, P.R. China
  • show less
    DOI: 10.1007/s13320-010-0017-9 Cite this Article
    [in Chinese], [in Chinese]. Pressure Sensor Based on the Fiber-Optic Extrinsic Fabry-Perot Interferometer[J]. Photonic Sensors, 2011, 1(1): 72 Copy Citation Text show less
    References

    [1] Robert J. Schroeder, Rogerio T. Ramos, and Tsutomu Yamate, “Fiber optic sensors for oil field services,” in Proc. Fiber Optic Sensor Technology and Applications, Boston, pp. 12-22, 1999.

    [2] Alan D. Kersey and F. K. Didden, “CiDRA: leveraging mulitchannel telecommunications technology for enhanced downhole monitoring capabilities in the oil and gas industry,” in Proc. Fiber Optic Sensor Technology and Applications, Boston, pp. 12-22, 1999.

    [3] Brian Culshaw, W. Craig Michie, and Peter T. Gardiner, “Smart structures: the role of fiber optics,” in Proc. Interferometry’94: Interferometric Fiber Sensing, Warsaw, pp. 134-151, 1994.

    [4] A. Wang, H. Xiao, Russell G. May, J. Wang, W. Zhao, and J. Deng, “Optical fiber sensors for harsh environments,” in International Conference on Sensors and Control Techniques, Wuhan, pp. 2-6, 2000.

    [5] S. H. Aref, H. Latifi, M. I. Zibaii, et al., “Fiber optic Fabry Perot pressure sensor with low sensitivity to temperature changes for downhole application,” Optics Communications, vol. 269, no. 2, pp. 322-330, 2007.

    [6] S. H. Aref, M. I. Zibaii, and H. Latifi. “An improved fiber optic pressure and temperature sensor for downhole application,” Meas. Sci. Technol., vol. 20, no. 3, pp. 1-6, 2009.

    [7] J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol., vol. 13, no. 7, pp. 1193-1199, 1995.

    [8] W. B. Spillman, “Multimode fiber-optic pressure sensor based on the photoelastic effect,” Opt. Lett., vol. 7, no. 8, pp. 388-390, 1982.

    [9] I. P. Giles, S. McNeill, and B. Culshaw, “A stable remote intensity based fiber sensor,” J. Phys., vol. 18, no. 6, pp. 1124-1126, 1985.

    [10] A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelastic effect and its applications,” J. Lightwave Technol., vol. 10, no. 10, pp. 1466-1472, 1992.

    [11] D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett., vol. 35, no. 15, pp. 1268-1269, 1999.

    [12] M. G. Xu, H. Geiger, and J. P. Dakin, “Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing,” Electron. Lett., vol. 32, no. 2, pp. 128-129, 1996.

    [13] Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A: Phys., vol. 103, no. 13, pp. 364-376, 2003.

    [14] K. A. Murphy, Michael F. Gunther, Ashish M. Vengsarkar, and Richard O.Claus, “Quadrature phase-shifted extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett., vol. 24, no. 6, pp. 273-275, 1991.

    [15] K. A. Murphy, M. F. Gunther, R. G. May, R. O. Claus, T. A. Tran, J. A. Greene, and P. G. Duncan, “EFPI sensor manufacturing and applications,” in Proc. Smart Structures and Materials 1996: Industrial and Commercial Applications, San Diego, pp. 476-482, 2005.

    [16] A. Wang, “Optical fiber sensors for energy-production and energy-intensive industries,” in Proc. the International Society for Optical Engineering, Shanghai, pp. 377-381, 2002.

    [17] J. Deng,H. Xiao,W. Huo, et al., “Optical fiber sensor-based detection of Partial discharges in power transformers,” Optics & Laser Technology, vol. 33, no. 5, pp. 305-311, 2001.

    [18] J. Xu, G. Piekrell, and B. Yu, “Epoxy-free high temperature fiber optic pressure sensors for gas turbine engine applications,” in Proc. Sensors for Harsh Environments, Philadelphia, pp. 1-10, 2004.

    [19] G. C. Hill, R. Melamud, F. E. Declercq, et al., “SU-8MEMS Fabry-Perot pressure sensor,” Sens. Actuators A: Phys., vol. 138, no. 1, pp. 52-62, 2007.

    [20] J. Zhou, S. Dasgupta, H. Kobayashi, J. M. Wolff, H. E. Jackson, and J. T. Boyd, “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng., vol. 40, no. 4, pp. 598-604, 2001.

    [21] C. Yang, C. Zhao, Lester Wold, and Kenton R. Kaufman, “Biocompatibility of a physiological pressure sensor,” Biosensors and Bioelectronics, vol. 19, no. 1, pp. 51-58, 2003.

    [22] Edvard Cibula and Denis Donlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt., vol. 44, no. 14, pp. 2736-2744, 2005.

    [23] Zhu Yizheng, G.Pickrell, Wang Xinwei, et al., “Miniature fiber optic pressure sensor for turbine engines,” in Proc. Sensors for harsh Environments, Bellingham, pp. 11-18, 2004.

    [24] Kentaro Totsu, Yoichi Haga,and Masayoshi Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng., vol. 15, no. 1, pp. 71-75, 2005.

    [25] GE Yi-xian, WANG Ming, CHEN Xu-xing, and LI Ming, “A Novel Fabry-Perot MEMS Fiber Pressure Sensor Based on Intensity Demodulation Method Interferometry,” Chinese Journal of Sensors and Actuators, vol. 19, no. 3, pp. 1832-1839, 2006(in Chinese).

    [26] V. Arya, M. D. Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry–Pérot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol., vol. 1, no. 4, pp. 380-384, 1995.

    [27] C. E. Lee and H. F. Taylor, “Fiber-optic Fabry–Pérot temperature sensor using a low-coherence source,” J. Lightw. Technol., vol. 9, no. 1, pp. 129-134, 1991.

    [28] Y. N. Ning, K. T. V. Grattan, and A. W. Palmer, “Fibre-optic interferometric systems using low-coherent light sources,” Sens. Actuators A: Phys., vol. 30, no. 3, pp. 181-192, 1992.

    [29] Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol., vol. 7, no. 7, pp. 981-999, 1996.

    [30] F. Shen and A. Wang, “Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt., vol. 44, no. 25, pp. 5206-5214, 2005.

    [31] Y. J. Rao, “Demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks,” Opt. Lett., vol. 31, no. 6, pp. 700-702, 2006.

    [32] Jiang Y., “Fourier transform white-light interferometry for the measurement of fiber-optic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett., vol. 20, no. 2, pp. 75-77, 2008.

    [33] M. Han, “Theoretical and Experimental Study of Low-Finesse Extrinsic Fabry-Perot Interferometric Fiber Optic Sensors,” Ph. D. dissertation, Electrical and Computer Engineering, Virginia Tech., USA, 2006.

    [34] A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity based optical fiber sensors,” J. Lightw. Technol., vol. 19, no. 10, pp. 1495-1501, 2001.

    [35] Bing Yu, Anbo Wang, and Gary R. Pickrell, “Analysis of Fiber Fabry–Pérot Interferometric Sensors Using Low-Coherence Light Sources,” J. Lightw. Technol., vol. 24, no 4, pp. 1758-1767, 2006.

    [36] R. G. May, A. Wang, H. Xiao, et al., “SCIIB pressure sensors for oil extraction applications,” in Proc. Harsh Environment Sensors II, Boston, MA, pp. 29-35, 1999.

    [37] Guiju Zhang, Qingxu Yu, and Shide Song, “An investigation of interference/intensity demodulated fiber optic Fabry-Perot cavity sensor,” Sens. Actuators A: Phys., vol. 116, no. 1, pp. 33-38, 2005.

    [38] P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Pérot interferometer,” Appl. Opt., vol. 35, no. 4, pp. 663-675, 1996.

    [39] J. F. Dorighi, S. Krishnaswamy, and J. Achenbach, “Stabilization of an embedded fiber optic Fabry-Pérot sensor for ultra-sound detection,” IEEE Trans. Ultrason. Ferroelectr. and Freq. Control, vol. 42, no. 5, pp. 820-824, 1995.

    [40] J. Xu, X. Wang, K. L. Cooper, et al., “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett., vol. 30, no. 24, pp. 3269-3271, 2005.

    [41] N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry–Pérot interferometer vibration and acoustic systems for airport ground traffic monitoring,” in Proc. Inst. Elect. Eng. -Optoelectron., vol. 144, no. 3, pp. 134-144, 1997.

    [42] B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry-Pérot sensors for partial discharge detection in power transformers,” Appl. Opt., vol. 42, no. 16, pp. 3241-3250, 2003.

    [43] B. Yu and A. Wang, “Grating-assisted demodulation of interferometric optical sensors,” Appl. Opt., vol. 42, no. 34, pp. 6824-6829, 2003.

    [44] H. Xiao, J. D. Deng, G. Pickrell, R. G.May, and A.Wang, “Single-crystal sapphire fiber-based strain sensor for high temperature applications,” J. Lightw. Technol., vol. 21, no. 10, pp. 2276-2283, 2003.

    [45] S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, and E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Proc. Sensors and controls for advanced manufacturing, Pittsburgh PA, pp. 44-48, 1997.

    [46] Jing Zhenguo and Yu Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. Test and Measurement, pp. 3509-3511, 2005.

    [47] Shide Song, “Study on the Characteristics and Sensing Applications of Long Period Fiber Gratings,” Ph. D. dissertation, Dalian University of Technology, China, 2006.

    [48] Qi Wang, Lei Zhang, Changsen Sun, and Qingxu Yu, “Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement,” IEEE Sensors Journal, vol. 8, no. 11, pp. 1879-1883, 2008.

    [49] Qi Wang, “Study on Key Technologies of Fiber EFPI/FBG Sensing System for Oil Well Logging,” Ph. D. dissertation, Dalian University of Technology, China, 2009.

    [50] Tao Lü and Suping Yang, “Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor,” Appl. Opt., vol. 46, no. 18, pp. 3862-3867, 2007.

    [51] Tao Lü, Zhengjia Li, Danqing Xia, Kaihua He, and Guangyong Zhang, “Asymmetric Fabry-Perot fiber-optic pressure sensor for liquid-level measurement,” Review of Scientific Instruments, vol. 80, no. 3, pp. 033104, 2009.

    [52] Qiaoyun Wang, Wenhua Wang, Xinsheng Jiang, and Qingxu Yu, “Diaphragm-based Extrinsic Fabry-Perot Interferometric optical fiber pressure sensor,” presented at Proc. Advanced Optical Manufacturing and Testing Technologies, Dalian, China, 2010.

    [53] D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett., vol. 30, no. 16, pp. 2071-2073, 2005.

    [54] Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor”, IEEE Photo. Technol. Lett., vol. 17, no. 2, pp. 447-449, 2005.

    [55] D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 993-995, 2001.

    [56] X. Wang, B. Li, Z. Xiao, et al., “An ultra-sensitive optical MEMS sensor for partial discharge detection,” J. Micromech. Microeng., vol. 15, no. 3, pp. 521-527, 2005.

    [57] Qiaoyun Wang and Qingxu Yu, “Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor,” Chinese Optics Letters, vol. 8, no. 3, pp. 266-269, 2010(in Chinese).

    [58] P. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chemical Society Reviews, vol. 31, no. 4, pp. 201-210, 2002.

    [59] M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. W chter, “Trace gas monitoring with infrared laser-based detection schemes,” Applied Physics B: Lasers and Optics, vol. 90, no, 2, pp.289-300, 2008.

    [60] M. van Herpen, A. Ngai, S. Bisson, J. Hackstein, E. Woltering, and F. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Applied Physics B: Lasers and Optics, vol. 82, no. 4, pp. 665-669, 2006.

    [61] M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. Patel, “High-sensitivity detection of TNT,” in Proceedings of the National Academy of Sciences, vol. 103, no. 52, pp. 19630-19634, 2006.

    [62] J. Li, X. Gao, L. Fang, W. Zhang, and H. Cha, “Resonant photoacoustic detection of trace gas with DFB diode laser,” Optics & Laser Technology, vol. 39, no. 6, pp. 1144-1149, 2007.

    [63] A. Thony and M. Sigrist, “New developments in CO2-laser photoacoustic monitoring of trace gases,” Infrared Physics & Technology, vol. 36, no. 2, pp. 585-615, 1995.

    [64] Y. Peng, W. Zhang, L. Li, and Q. Yu, “Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 74, no. 4, pp. 924-927, 2009.

    [in Chinese], [in Chinese]. Pressure Sensor Based on the Fiber-Optic Extrinsic Fabry-Perot Interferometer[J]. Photonic Sensors, 2011, 1(1): 72
    Download Citation