• Infrared and Laser Engineering
  • Vol. 48, Issue 2, 203001 (2019)
Liang Li1、2、3, Wen Long3, Jiang Chunping1, and Chen Qin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0203001 Cite this Article
    Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001 Copy Citation Text show less
    References

    [1] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

    [2] Yao Jianquan. Introduction of THz-wave and its applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(6):703-707. (in Chinese)

    [3] Menikh A. Terahertz-biosensing Technology: Progress, Limitations, and Future Outlook[M]. Berlin: Springer, 2010: 283-295.

    [4] Chen T, Li S, Sun H. Metamaterials application in sensing[J]. Sensors (Basel), 2012, 12(3): 2742-2765.

    [5] Yan Xin, Zhang Xingfang, Liang Lanju, et al. Research progress in the application of biosensors by using metamaterial in terahertz wave[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2365-2372. (in Chinese)

    [6] Nagel M, Richter F, Haring-Bolivar P, et al. A functionalized THz sensor for marker-free DNA analysis[J]. Physics in Medicine & Biology, 2003, 48(22): 3625.

    [7] Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications[J]. International Journal of Infrared and Millimeter Waves, 2006, 27(4): 481-503.

    [8] O′Hara J F, Withayachumnankul W, Al-Naib I. A review on thin-film sensing with terahertz waves[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(3): 245-291.

    [9] Luther J M, Jain P K, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Materials, 2011, 10(5): 361.

    [10] Kim J B, Lee J H, Moon C K, et al. Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes[J]. Advanced Materials, 2013, 25(26): 3571-3577.

    [11] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779.

    [12] Pitchappa P, Manjappa M, Ho C P, et al. Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]. Advanced Optical Materials, 2016, 4(4): 541-547.

    [13] Qu Y, Li Q, Gong H, et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films[J]. Advanced Optical Materials, 2016, 4(3): 480-486.

    [14] Nicholls L H, Rodríguez-Fortuno F J, Nasir M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 2017, 11(10): 628.

    [15] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces[J]. Nano Letters, 2016, 17(1): 407-413.

    [16] Huang Y W, Lee H W H, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319-5325.

    [17] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of>230 phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034.

    [18] Lee D E, Lee Y J, Shin E, et al. Mach-zehnder interferometer refractive index sensor based on a plasmonic channel waveguide[J]. Sensors, 2017, 17(11): 2584.

    [19] Chu C S, Lin K Z, Tang Y H. A new optical sensor for sensing oxygen based on phase shift detection[J]. Sensors and Actuators B: Chemical, 2016, 223: 606-612.

    [20] York T, Powell S B, Gao S, et al. Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications[J]. Proceedings of the IEEE, 2014, 102(10): 1450-1469.

    [21] Maier S A, Andrews S R, Martin-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17): 176805.

    [22] Joy S R, Erementchouk M, Mazumder P. Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors[J]. Physical Review B, 2017, 95(7): 075435.

    [23] Garcia-Vidal F J, Martin-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S97.

    [24] Kats M A, Woolf D, Blanchard R, et al. Spoof plasmon analogue of metal-insulator-metal waveguides[J]. Optics Express, 2011, 19(16): 14860-14870.

    [25] Drexler C, Shishkanova T V, Lange C, et al. Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer[J]. Microchimica Acta, 2014, 181(15-16): 1857-1862.

    [26] Liu C, Liu P, Yang C, et al. Terahertz metamaterial based on dual-band graphene ring resonator for modulating and sensing applications[J]. Journal of Optics, 2017, 19(11): 115102.

    [27] Okamoto K, Tsuruda K, Diebold S, et al. Terahertz sensor using photonic crystal cavity and resonant tunneling diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(9): 1085-1097.

    [28] Benz A, Deutsch C, Brandstetter M, et al. Terahertz active photonic crystals for condensed gas sensing[J]. Sensors, 2011, 11(6): 6003-6014.

    [29] Astley V, Reichel K S, Jones J, et al. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities[J]. Applied Physics Letters, 2012, 100(23): 231108.

    [30] Islam M, Chowdhury D R, Ahmad A, et al. Terahertz plasmonic waveguide based thin film sensor[J]. Journal of Lightwave Technology, 2017, 35(23): 5215-5221.

    [31] Rich R L, Myszka D G. Advances in surface plasmon resonance biosensor analysis[J]. Current Opinion in Biotechnology, 2000, 11(1): 54-61.

    [32] Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(35): 10596-10604.

    [33] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 2016, 16(2): 1502-1508.

    [34] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424: 824.

    [35] Im H, Shao H, Park Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 2014, 32(5): 490.

    [36] Baaske M D, Foreman M R, Vollmer F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform[J]. Nat Nanotechnol, 2014, 9(11): 933-942.

    [37] Li Y C, Chang Y F, Su L C, et al. Differential-phase surface plasmon resonance biosensor[J]. Analytical Chemistry, 2008, 80(14): 5590-5595.

    [38] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-855.

    [39] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672.

    [40] Yu N, Wang Q J, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730-735.

    [41] Brongersma M L, Kik P G. Surface Plasmon Nanophotonics[M]. Berlin: Springer, 2007.

    [42] Ng B, Wu J, Hanham S M, et al. Spoof plasmon surfaces: a novel platform for THz sensing[J]. Advanced Optical Materials, 2013, 1(8): 543-548.

    [43] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. JOSA A, 1994, 11(3): 963-983.

    [44] Liu G, He M, Tian Z, et al. Terahertz surface plasmon sensor for distinguishing gasolines[J]. Applied Optics, 2013, 52(23): 5695-5700.

    [45] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13): 14056-14062.

    [47] Ng B, Hanham S M, Wu J, et al. Broadband terahertz sensing on spoof plasmon surfaces[J]. ACS Photonics, 2014, 1(10): 1059-1067.

    [48] Sihvola A. Metamaterials in electromagnetics[J]. Metamaterials, 2007, 1(1): 2-11.

    [49] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.

    [50] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

    [51] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351-1353.

    [52] Zhang F, Zhao Q, Kang L, et al. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial[J]. Physical Review B, 2009, 80(19): 195119.

    [53] Cong L, Manjappa M, Xu N, et al. Fano resonances in terahertz metasurfaces: a figure of merit optimization[J]. Advanced Optical Materials, 2015, 3(11): 1537-1543.

    [54] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

    [55] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308.

    [56] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834.

    [57] Driscoll T, Andreev G O, Basov D N, et al. Tuned permeability in terahertz split-ring resonators for devices and sensors[J]. Applied Physics Letters, 2007, 91(6): 062511.

    [58] Chiam S Y, Singh R, Gu J, et al. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Applied Physics Letters, 2009, 94(6): 064102.

    [59] Cubukcu E, Zhang S, Park Y S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Applied Physics Letters, 2009, 95(4): 043113.

    [60] Wang B X, Wang G Z, Sang T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application[J]. Journal of Physics D: Applied Physics, 2016. 49(16): 165307.

    [61] Hu X, Xu G, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 2016, 10(6): 962-969.

    [62] Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials[J]. Optics Express, 2010, 18(12): 13044-13050.

    [63] Wu X, Quan B, Pan X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor[J]. Biosensors and Bioelectronics, 2013, 42: 626-631.

    [64] Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18): 184102.

    [65] Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17): 171101.

    [66] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Applied Physics Letters, 2010, 97(19): 191906.

    [67] Tao H, Strikwerda A C, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010, 97(26): 261909.

    [68] Srivastava Y K, Cong L, Singh R. Dual-surface flexible THz Fano metasensor[J]. Applied Physics Letters, 2017, 111(20): 201101.

    [69] Wu P C, Sun G, Chen W T, et al. Vertical split-ring resonator based nanoplasmonic sensor[J]. Applied Physics Letters, 2014, 105(3): 033105.

    [70] Liu Z, Liu Z, Li J, et al. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials[J]. Scientific Reports, 2016, 6: 27817.

    [71] Cheng Y, Mao X S, Wu C, et al. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing[J]. Optical Materials, 2016, 53: 195-200.

    [72] Wang W, Yan F, Tan S, et al. Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators[J]. Photonics Research, 2017, 5(6): 571-577.

    [73] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    [74] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

    [75] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 2011, 11(9): 3557-3563.

    [76] Cong L, Tan S, Yahiaoui R, et al. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces[J]. Applied Physics Letters, 2015, 106(3): 031107.

    [77] Sun Y, Xia X, Feng H, et al. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Applied Physics Letters, 2008, 92(22): 221101.

    [78] O′Hara J F, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations[J]. Optics Express, 2008, 16(3): 1786-1795.

    [79] Wang B X, Zhai X, Wang G Z, et al. A novel dual-band terahertz metamaterial absorber for a sensor application[J]. Journal of Applied Physics, 2015, 117(1): 014504.

    [80] Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Journal of Applied Physics, 2015, 118(8): 083103.

    [81] Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1): 1-5.

    [82] Fan F, Gu W H, Wang X H, et al. Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array[J]. Applied Physics Letters, 2013, 102(12): 121113.

    [83] Hanham S M, Watts C, Otter W J, et al. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies[J]. Applied Physics Letters, 2015, 107(3): 032903.

    [84] Li X, Song J, Zhang J X J. Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub[J]. Optics Communications, 2016, 361: 130-137.

    [85] Zhang Y, Li T, Zeng B, et al. A graphene based tunable terahertz sensor with double Fano resonances[J]. Nanoscale, 2015, 7(29): 12682-12688.

    [86] He X, Zhang Q, Lu G, et al. Tunable ultrasensitive terahertz sensor based on complementary graphene metamaterials[J]. Rsc Advances, 2016, 6(57): 52212-52218.

    [87] Chen X, Fan W, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing[J]. Carbon, 2018. 133: 416-422.

    [89] Bui T S, Dao T D, Dang L H, et al. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules[J]. Scientific Reports, 2016, 6: 32123.

    Liang Li, Wen Long, Jiang Chunping, Chen Qin. Research progress of terahertz sensor based on artificial microstructure[J]. Infrared and Laser Engineering, 2019, 48(2): 203001
    Download Citation