• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 70002 (2018)
Yao Wentao and Gao Wanrong*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.070002 Cite this Article Set citation alerts
    Yao Wentao, Gao Wanrong. Development and Application of Endoscopic Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70002 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    [2] Lee P, Gao W, Zhang X. Performance of single-scattering vs. multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography[J]. Applied Optics, 2010, 49(18): 3538-3544.

    [3] Zhu X M, Gao W R, Zhu Y. Improved khler illumination-based full-field optical coherence tomography system[J]. Acta Optica Sinica, 2014, 34(5): 0511002.

    [4] Zhang X L, Gao W R, Chen C L, et al. Extraction and compensation for depth-resolved phase error in spectral domain optical coherence tomography[J]. Chinese Journal of Lasers, 2014, 41(2): 0204002.

    [5] Bian H Y, Gao W R, Zhang X L, et al. Reconstruction method based on the detected matrix for spectral-domain optical coherence tomography[J]. Acta Optica Sinica, 2014, 34(2): 0211003.

    [6] Gao W. Effects of temporal and spatial coherence on resolution in full-field optical coherence tomography[J]. Journal of Modern Optics, 2015, 62(21): 1764-1774.

    [7] Zhu Y, Gao W R. High-resolution full-field optical coherence tomography for biological tissue[J]. Chinese Journal of Lasers, 2014, 41(8): 0804002.

    [8] Liao J L, Gao W R, Fang Q R. Spectrally encoded endoscopic imaging[J]. Acta Optica Sinica, 2014, 34(6): 0611004.

    [9] Li P, Kong X, Sun Q Y, et al. Numerical dispersion compensation in spectral domain optical coherence tomography based on concentration of energy in image spectrum[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111701.

    [10] Chen C, Liao J, Gao W. The cross-correlation in spectral domain based Doppler optical coherence tomography[J]. Optics Communications, 2015, 338: 433-437.

    [11] Zhu Y, Gao W R, Guo Y C. A method of improving imaging quality of full-field optical coherence tomography[J]. Acta Optica Sinica, 2015, 35(5): 0517001.

    [12] Zhou L P, Chen C L, Gao W R. Interpixel shift technique for increasing imaging depth of frequency domain optical coherence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(2): 021701.

    [13] Liao J L, Gao W R. A method of improving signal-to-noise ratio in spectrally encoded microscopy[J]. Acta Optica Sinica, 2015, 35(3): 0317001.

    [14] Gao W. Fourier spectrum analysis of full-field optical coherence tomography for tissue imaging[J]. Proceedings of the Royal Society A, 2015, 471(2179): 20150099.

    [15] Li P, Gao W R, Chen C L. Cross-correlation method for measuring spatial transverse flow rate based on spectral domain optical coherence tomography[J]. Chinese Journal of Lasers, 2015, 42(10): 1004002.

    [16] Chen C, Shi W, Gao W. Removing noise caused by motion artifacts in microcirculation maps of human skin in vivo[J]. Journal of Microscopy, 2015, 260(3): 389-399.

    [17] Chen C, Liao J, Gao W. Cube data correlation-based imaging of small blood vessels[J]. Optical Engineering, 2015, 54(4): 043104.

    [18] Bian H, Gao W. Stage-based frequency-modulated full-range complex Fourier-domain optical coherence tomography[J]. Optical Review, 2015, 22(5): 700-705.

    [19] Chen C, Shi W, Gao W. Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo[J]. Journal of Biomedical Optics, 2015, 20(11): 116009.

    [20] Zhu Y,Gao W, Zhou Y, et al. Rapid and high-resolution imaging of human liver specimens by full-field optical coherence tomography[J]. Journal of Biomedical Optics, 2015, 20(11): 116010.

    [21] Shi W S, Gao W R, Chen C L. Handheld swept source optical coherence tomography for imaging human skin in vivo[J]. Acta Optica Sinica, 2015, 35(11): 1117001.

    [22] Liu H, Gao W R, Chen C L. Handheld Spectral domain optical coherence tomography for in vivo tooth imaging[J]. Chinese Journal of Lasers, 2016, 43(2): 0204003.

    [23] Gao W. Image contrast reduction mechanism in full-field optical coherence tomography[J]. Journal of Microscopy, 2016, 261(3): 199-216.

    [24] Gao W R, Chen Y D, Liu C, et al. FPGA-based rapid full-field optical coherence tomography[J]. Acta Photonica Sinica, 2016, 45(6): 0611001.

    [25] Yang F F, Gao W R, Zhu Y. Hilbert transform in full-field optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111102.

    [26] Gao W, Zhu Y. Fractal analysis of en face tomographic images obtained with full field optical coherence tomography[J]. Annalen der Physik, 2017, 529(3): 1600216.

    [27] Guo Y C, Gao W R, Zhu Y. Compensation interferometer based tandem full-field optical coherence tomography system[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011101.

    [28] Wu X,Gao W. Dispersion analysis in micron resolution spectral domain optical coherence tomography[J]. Journal of the Optical Society of America B, 2017, 34(1): 169-177.

    [29] Zhang Y X, Gao W R, Wu X P. Interferometric synthetic aperture microscopy algorithm based on nonuniform fast Fourier transform[J]. Acta Optica Sinica, 2017, 37(4): 0418001.

    [30] Chen C, Cheng K, Jakubovic R, et al. High speed, wide velocity dynamic range Doppler optical coherence tomography (part V): Optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging[J]. Optics Express, 2017, 25(7): 7761-7777.

    [31] Gao W, Wu X. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues[J]. Journal of Microscopy, 2017, 268(2): 119-128.

    [32] Lü P, Liu F, Lü K Z, et al. A developmental history of endoscopy[J]. Chinese Journal of Medical History, 2002, 31(1): 10-12.

    [33] Tran P H, Mukai D S, Brenner M, et al. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe[J]. Optics Letters, 2004, 29(11): 1236-1238.

    [34] Vakoc B J, Shishko M, Seok H Y, et al. Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video)[J]. Gastrointestinal Endoscopy, 2007, 65(6): 898-905.

    [35] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distance by backscattering spectral interferometry[J]. Optics Communications,1995, 117(1/2): 43-48.

    [36] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

    [37] Tearney G J, Boppart S A, Bouma B E, et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 1996, 21(7): 543-545.

    [38] Bian H Y, Gao W R, Liao J L. Design of the probe of swept source optical tomography for endoscopic imaging[J]. Acta Photonica Sinica, 2016, 45(9): 0911001.

    [39] Wu Y, Xi J, Huo L, et al. Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(4): 863-869.

    [40] Xi J, Huo L, Wu Y, et al. High-resolution OCT balloon imaging catheter with astigmatism correction[J]. Optics Letters, 2009, 34(13): 1943-1945.

    [41] Li X D, Boppart S A, Van Dam J, et al. Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett′s esophagus[J]. Endoscopy, 2000, 32(12): 921-930.

    [42] Wang T, Pfeiffer T, Regar E, et al. Heartbeat OCT: In vivo intravascular megahertz-optical coherence tomography[J]. Biomedical Optics Express, 2015, 6(12): 5021-5032.

    [43] Isenberg G, Sivak M V, Chak A, et al. Accuracy of endoscopic optical tomography in the detection of dysplasia in Barrett′s esophagus: A prospective, double-blinded study[J]. Gastrointestinal Endoscopy, 2005, 62(6): 825-831.

    [44] Wang T, Wieser W, Springeling G, et al. Intravascular optical coherence tomography imaging at 3200 frames per second[J]. Optics Letters, 2013, 38(10): 1715-1717.

    [45] Li Q, GaoC L, Chen X D, et al. Design of OCT endoscopic imaging system by rotated scanning probe[J]. Acta Photonica Sinica, 2009, 38 (10): 2650-2653.

    [46] Bouma B E, Tearney G J. Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography[J]. Optics Letters, 1999, 24(8): 531-533.

    [47] Fu H L, Leng Y, Cobb M J, et al. Flexible miniature compound lens design for high-resolution optical coherence tomography balloon imaging catheter[J]. Journal of Biomedical Optics, 2008, 13(6): 060502.

    [48] Tumlinson A R, Barton J K, Pivazay B, et al. Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon[J]. Optics Express, 2006, 14(5): 1878-1887.

    [49] Wang D, Duan C, Zhang X, et al. Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe[J]. Applied Optics, 2016, 55(25): 6930-6935.

    [50] Tumlinson A R, Hariri L P, Utzinger U, et al. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement[J]. Applied Optics, 2004, 43(1): 113-121.

    [51] Ryu S Y, Choi H Y, Na J, et al. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber[J]. Optics Letters, 2008, 33(20): 2347-2349.

    [52] Li X, Yin J, Hu C, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe[J]. Applied Physics Letters, 2010, 97(13): 133702.

    [53] Moon S, Piao Z, Kim C, et al. Lens-free endoscopy probe for optical coherence tomography[J]. Optics Letters, 2013, 38(12): 2014-2016.

    [54] Cui D, Chu K K, Yin B, et al. Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia[J]. Optics Letters, 2017, 42(4): 867-870.

    [55] Liu L B, Liu C, Howe W C, et al. Binary-phase spatial filter for real-time swept-source optical coherence microscopy[J]. Optics Letters, 2007, 32(16): 2375-2377.

    [56] Kang L H, Yang J K, Wang G L, et al. The sensitivity and specificity of one-field non-mydriatic 45°digital photography for diabetic retinopathy screening[J]. Journal of Medical Research, 2007, 36(7): 25-28.

    [57] Lorenser D, Yang X, Kirk R W, et al. Ultrathin side-viewing needle probe for optical coherence tomography[J]. Optics Letters, 2011, 36(19): 3894-3896.

    [58] Yabushita H, Bouma B E, Houser S L, et al. Characterization of human atherosclerosis by optical coherence tomography[J]. Circulation, 2002, 106(13): 1640-1645.

    [59] Ughi G J, Wang H, Gerbaud E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1304-1314.

    [60] Lee H C, Ahsen O O, Liang K, et al. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett′s esophagus: A pilot study (with video)[J]. Gastrointestinal Endoscopy, 2017, 8(3): 476-484.

    [61] Sergeev A, Gelikonov V, Gelikonov G, et al. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa[J]. Optical Express, 1997, 1(13): 432-440.

    [62] Masci E, Mangiavillano B, Barera G, et al. Optical coherence tomography in pediatric patients: A feasible technique for diagnosing celiac disease in children with villous atrophy[J]. Digestive and Liver Disease, 2009, 41(9): 639-643.

    [63] Sivak M V, Kobayashi K, Izatt J A, et al. High-resolution endoscopic imaging of the GI tract using optical coherence tomography[J]. Gastrointestinal Endoscopy, 2000, 51(4): 474-479.

    [64] Draganov P V, Chauhan S, Wagh M S, et al. Diagnostic accuracy of conventional and cholangioscopy-guided sampling of indeterminate biliary lesions at the time of ERCP: A prospective, long-term follow-up study[J]. Gastrointestinal Endoscopy, 2012, 75(2): 347-353.

    [65] Poneros J M, Tearney G J, Shiskov M, et al. Optical coherence tomography of the biliary tree during ERCP[J]. Gastrointestinal Endoscopy, 2002, 55(1): 84-88.

    [66] Tsuboi M, Hayashi A, Ikeda N, et al. Optical coherence tomography in the diagnosis of bronchial lesions[J]. Lung Cancer, 2005, 49(3): 387-394.

    [67] Schmidbauer J, Remzi M, Klatte T, et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder[J]. European Urology, 2009, 56(6): 914-919.

    [68] Zagaynova E V, Streltsova O S, Gladkova N D, et al. In vivo optical coherence tomography feasibility for bladder disease[J]. Journal of Urology, 2002, 167(3): 1492-1496.

    [69] Feldchtein F, Gelikonov G, Gelikonov V, et al. Endoscopic applications of optical coherence tomography[J]. Optical Express, 1998, 3(6): 257-270.

    [70] Bus M T, Bruin D M, Faber D J, et al. Optical coherence tomography as a tool for in vivo staging and grading of upper urinary tract urothelial carcinoma: A study of diagnostic accuracy[J]. Journal of Urology, 2016, 196(6): 1749-1755.

    [71] Chu K K, Unglert C, Ford T N, et al. In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(7): 2494-2505.

    Yao Wentao, Gao Wanrong. Development and Application of Endoscopic Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70002
    Download Citation